Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Henry reaction concentration

Fig. 6.2.4 Change in the absorption spectrum of pholasin (14.5 p,M) caused by the luminescence reaction catalyzed by Pholas luciferase (1.1 p.M). The curve shown is the differential spectrum between a cell containing the mixture of pholasin and Pholas luciferase (0.9 ml in the sample light path) and two cells containing separate solutions of pholasin and the luciferase at the same concentrations (in the reference light path), all in 0.1 M Tris-HCl buffer, pH 8.5, containing 0.5 M NaCl. Four additions of ascorbate (3 iM) were made to the sample mixture to accelerate the reaction. The spectrum was recorded after 120 min with a correction for the base line. From Henry and Monny, 1977, with permission from the American Chemical Society. Fig. 6.2.4 Change in the absorption spectrum of pholasin (14.5 p,M) caused by the luminescence reaction catalyzed by Pholas luciferase (1.1 p.M). The curve shown is the differential spectrum between a cell containing the mixture of pholasin and Pholas luciferase (0.9 ml in the sample light path) and two cells containing separate solutions of pholasin and the luciferase at the same concentrations (in the reference light path), all in 0.1 M Tris-HCl buffer, pH 8.5, containing 0.5 M NaCl. Four additions of ascorbate (3 iM) were made to the sample mixture to accelerate the reaction. The spectrum was recorded after 120 min with a correction for the base line. From Henry and Monny, 1977, with permission from the American Chemical Society.
Palladium metal is not produced in the new reaction and the substitution of a twenty-fold excess of lithium chloride for cupric chloride prevented reaction kinetic data revealed first-order dependences upon both Pd(II) and Cu(II). The distribution of products varied in an unpredictable way with reactant concentrations. The following mechanism was proposed by Henry (X = CP or CH3CO2 )... [Pg.341]

Both reactions are slow compared to the film diffusion in the liquid phase13-15. Hence, the reactions can be assumed to take place predominantly in the bulk phase of the liquid. The rate of mass transfer can be calculated using Equation 7.2. The interfacial concentration can be calculated using Henry Law. Mass transfer coefficients, interfacial area and gas hold-up data are required. Gas hold-up is defined as ... [Pg.137]

Classical C,C-coupling reactions of AN anions (Henry, Michael, and Mannich) involve complex systems of equilibria and, consequently, generally not performed in protic solvents. The introduction of the silyl protecting group allows one to perform these reactions in an aprotic medium to prepare or retain products unstable in the presence of active protons. In addition, the use of nucleophiles which are specifically active toward silicon (e.g., the fluoride anion) enables one to design a process in which the effective concentration of a-nitro carbanions is maintained low. [Pg.609]

The kinetics of the general enzyme-catalyzed reaction (equation 10.1-1) may be simple or complex, depending upon the enzyme and substrate concentrations, the presence/absence of inhibitors and/or cofactors, and upon temperature, shear, ionic strength, and pH. The simplest form of the rate law for enzyme reactions was proposed by Henri (1902), and a mechanism was proposed by Michaelis and Menten (1913), which was later extended by Briggs and Haldane (1925). The mechanism is usually referred to as the Michaelis-Menten mechanism or model. It is a two-step mechanism, the first step being a rapid, reversible formation of an enzyme-substrate complex, ES, followed by a slow, rate-determining decomposition step to form the product and reproduce the enzyme ... [Pg.264]

Henri and Michaelis and Menten assumed that the first at equilibrium, such that the concentration of the complex, step is a fast reaction virtually ES, may be represented by ... [Pg.264]

The result of the described methodical solution to monitor gas-consuming reactions at reduced partial pressure under isobaric conditions is shown in Figure 10.8 for the catalytic hydrogenation of COD with a cationic Rh-complex. The slope of the measured straight lines corresponds to the maximally obtainable rate (Vsat = k2 [E]0 = k 2 [H2] [E]0) [42 b], which is directly proportional to the hydrogen concentration in solution and at validity of Henry s law to the hydrogen partial pressure above the reaction solution. The experiments prove that the dilution factor of the gas phase can adequately be found in the rate constant (Further examples can be found in [47].)... [Pg.271]

Case 1 in Figure 45.2 refers to a case where the reaction between S and H2 is very slow. In that case, the rate of hydrogen consumed by the reaction (i.e., the rate of the reaction) is small compared to the maximum rate of mass transfer. Thus, mass transfer feeds the liquid phase easily with dissolved hydrogen. The liquid-phase hydrogen concentration is very close to that at equilibrium given by the Henry s law ... [Pg.1526]

Because hydroformylation is a gas-liquid two-phase reaction, the active concentrations of CO and H2 in the liquid reaction medium are dependent on the respective partial pressures in the gas phase. If we assume the validity of the simple Henry equation, and if we further assume that mass transfer from the gas to the liquid phase can be neglected, the gas concentrations can be substituted by the partial pressure pi... [Pg.26]

The procedure of Beutier and Renon as well as the later on described method of Edwards, Maurer, Newman and Prausnitz ( 3) is an extension of an earlier work by Edwards, Newman and Prausnitz ( ). Beutier and Renon restrict their procedure to ternary systems NH3-CO2-H2O, NH3-H2S-H2O and NH3-S02 H20 but it may be expected that it is also useful for the complete multisolute system built up with these substances. The concentration range should be limited to mole fractions of water xw 0.7 a temperature range from 0 to 100 °C is recommended. Equilibrium constants for chemical reactions 1 to 9 are taken from literature (cf. Appendix II). Henry s constants are assumed to be independent of pressure numerical values were determined from solubility data of pure gaseous electrolytes in water (cf. Appendix II). The vapor phase is considered to behave like an ideal gas. The fugacity of pure water is replaced by the vapor pressure. For any molecular or ionic species i, except for water, the activity is expressed on the scale of molality m ... [Pg.145]

Further experiments by Brown and particularly Henri were made with invertase. At that time the pH of the reactions was not controlled, mutarotation did not proceed to completion, and it is no longer possible to identify how much enzyme was used (Segal, 1959). Nevertheless, in a critical review of kinetic studies with invertase, Henri concluded (1903) that the rate of reaction was proportional to the amount of enzyme. He also stated that the equilibrium of the enzyme-catalyzed reaction was unaffected by the presence of the catalyst, whose concentration remained unchanged even after 10 hours of activity. When the concentration of the substrate [S] was sufficiently high the velocity became independent of [S]. Henri derived an equation relating the observed initial velocity of the reaction, Vq, to the initial concentration of the substrate, [S0], the equilibrium constant for the formation of an enzyme-substrate complex, Ks, and the rate of formation of the products, ky... [Pg.182]

A few gases may be involved in some enzyme reactions, e.g., C02 and 02 as used by carbonic anhydrase and produced by catalase, respectively. If the presence of such dissolved gases affects rates and equilibria at ordinary pressure, their importance will increase at higher pressure. Henry s law says that the partial pressure of a gas above a solution is proportional to its mole fraction in the solution. At high pressure it is more correct to speak of the fugacity / of a gas, instead of partial pressure, in the same sense that one uses activity instead of concentration in solution calculations. In dilute solutions, the fugacity of the dissolved gas is given by... [Pg.141]

The Henry s law constant in water was used in the McJilton et al. uptake model to determine the equilibrium concentration of ozone and sulfur dioxide at the surface of a simulated mucus film along the airways in Weibel s symmetric model.It is also used to determine the concentration of absorbed gas at the surface of the mucus when the pollutant gas undergoes a homogeneous or heterogeneous chemical reaction within the mucus layer. [Pg.299]

The rate of mass transfer of a snbstance across a water-gas bonndary is controlled by the diffnsion film model as well. Gas transfer from a water sonrce is faster than from a solid sonrce, and the chemical does not nndergo a chemical reaction during the transfer process. Under these conditions, the interface concentration may be interpreted in terms of the Henry constant (K ), which indicates whether the controlling resistance is in the liqnid or the gas film. When 5, a water film is the controlling factor, while a gas film controls the behavior when K >500. [Pg.146]


See other pages where Henry reaction concentration is mentioned: [Pg.28]    [Pg.16]    [Pg.326]    [Pg.326]    [Pg.103]    [Pg.241]    [Pg.83]    [Pg.326]    [Pg.83]    [Pg.84]    [Pg.85]    [Pg.199]    [Pg.384]    [Pg.218]    [Pg.62]    [Pg.243]    [Pg.1525]    [Pg.162]    [Pg.26]    [Pg.6]    [Pg.369]    [Pg.23]    [Pg.115]    [Pg.97]    [Pg.438]    [Pg.467]    [Pg.467]    [Pg.81]    [Pg.120]    [Pg.115]    [Pg.6]    [Pg.341]   
See also in sourсe #XX -- [ Pg.2 , Pg.325 ]

See also in sourсe #XX -- [ Pg.325 ]

See also in sourсe #XX -- [ Pg.325 ]

See also in sourсe #XX -- [ Pg.2 , Pg.325 ]

See also in sourсe #XX -- [ Pg.325 ]




SEARCH



Henry reaction

Reaction concentration

© 2024 chempedia.info