Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reynolds number heat transfer

Heat transfer, Reynolds number and surface area of the vessel. [Pg.160]

The second approach assigns thermal resistance to a gaseous boundary layer at the heat transfer surface. The enhancement of heat transfer found in fluidized beds is then attributed to the scouring action of solid particles on the gas film, decreasing the effective film thickness. The early works of Leva et al. (1949), Dow and Jacob (1951), and Levenspiel and Walton (1954) utilized this approach. Models following this approach generally attempt to correlate a heat transfer Nusselt number in terms of the fluid Prandtl number and a modified Reynolds number with either the particle diameter or the tube diameter as the characteristic length scale. Examples are ... [Pg.167]

Compute the process-side heat-transfer coefficient. The correlations for inside (process-side) heat-transfer coefficient in an agitated tank are similar to those for heat transfer in pipe flow, except that the impeller Reynolds number and geometric factors associated with the tank and impeller are used and the coefficients and exponents are different. A typical correlation for the agitated heat-transfer Nusselt number (ANu = htT/k) of a jacketed tank is expressed as... [Pg.447]

Flow Past Bodies. A fluid moving past a surface of a soHd exerts a drag force on the soHd. This force is usually manifested as a drop in pressure in the fluid. Locally, at the surface, the pressure loss stems from the stresses exerted by the fluid on the surface and the equal and opposite stresses exerted by the surface on the fluid. Both shear stresses and normal stresses can contribute their relative importance depends on the shape of the body and the relationship of fluid inertia to the viscous stresses, commonly expressed as a dimensionless number called the Reynolds number (R ), EHp/]1. The character of the flow affects the drag as well as the heat and mass transfer to the surface. Flows around bodies and their associated pressure changes are important. [Pg.89]

Eurther research on convective transport under low Reynolds number, quasicontinuum conditions is needed before the optimal design of such a micro heat exchanger is possible. The cooling heat exchanger is usually thermally linked to a relatively massive substrate. The effects of this linkage need to be explored and accurate methods of predicting the heat-transfer and pressure-drop performance need to be developed. [Pg.495]

Characterization and influence of electrohydro dynamic secondary flows on convective flows of polar gases is lacking for most simple as well as complex flow geometries. Such investigations should lead to an understanding of flow control, manipulation of separating, and accurate computation of local heat-transfer coefficients in confined, complex geometries. The typical Reynolds number of the bulk flow does not exceed 5000. [Pg.496]

Fig. 17. Heat-transfer coefficient comparisons for the same volumetric flow rates for (A) water, 6.29 kW, and a phase-change-material slurry (O), 10% mixture, 12.30 kW and ( ), 10% mixture, 6.21 kW. The Reynolds number was 13,225 to 17,493 for the case of water. Fig. 17. Heat-transfer coefficient comparisons for the same volumetric flow rates for (A) water, 6.29 kW, and a phase-change-material slurry (O), 10% mixture, 12.30 kW and ( ), 10% mixture, 6.21 kW. The Reynolds number was 13,225 to 17,493 for the case of water.
The minimum velocity requited to maintain fully developed turbulent flow, assumed to occur at Reynolds number (R ) of 8000, is inside a 16-mm inner diameter tube. The physical property contribution to the heat-transfer coefficient inside and outside the tubes are based on the following correlations (39) ... [Pg.508]

To the extent that radiation contributes to droplet heatup, equation 28 gives a conservative estimate of the time requirements. The parameter ( ) reflects the dependence of the convective heat-transfer coefficient on the Reynolds number ... [Pg.55]

The dimensionless relations are usually indicated in either of two forms, each yielding identical resiilts. The preferred form is that suggested by Colburn ran.s. Am. In.st. Chem. Eng., 29, 174—210 (1933)]. It relates, primarily, three dimensionless groups the Stanton number h/cQ, the Prandtl number c Jk, and the Reynolds number DG/[L. For more accurate correlation of data (at Reynolds number <10,000), two additional dimensionless groups are used ratio of length to diameter L/D and ratio of viscosity at wall (or surface) temperature to viscosity at bulk temperature. Colburn showed that the product of the Stanton number and the two-thirds power of the Prandtl number (and, in addition, power functions of L/D and for Reynolds number <10,000) is approximately equal to half of the Fanning friction fac tor//2. This produc t is called the Colburn j factor. Since the Colburn type of equation relates heat transfer and fluid friction, it has greater utility than other expressions for the heat-transfer coefficient. [Pg.559]

Limiting Nusselt numbers for laminar flow in annuli have been calculated by Dwyer [Nucl. Set. Eng., 17, 336 (1963)]. In addition, theoretical analyses of laminar-flow heat transfer in concentric and eccentric annuh have been published by Reynolds, Lundberg, and McCuen [Jnt. J. Heat Ma.s.s Tran.sfer, 6, 483, 495 (1963)]. Lee fnt. J. Heat Ma.s.s Tran.sfer, 11,509 (1968)] presented an analysis of turbulent heat transfer in entrance regions of concentric annuh. Fully developed local Nusselt numbers were generally attained within a region of 30 equivalent diameters for 0.1 < Np < 30, lO < < 2 X 10, 1.01 <... [Pg.561]

Transition Region Turbulent-flow equations for predicting heat transfer coefficients are usually vahd only at Reynolds numbers greater than 10,000. The transition region lies in the range 2000 < < 10,000. [Pg.562]

Vertical Tubes For the following cases Reynolds number < 2100 and is calculated by using F = Wp/ KD. The Nusselt equation for the heat-transfer coefficient for condensate films may be written in the following ways (using liquid physical properties and where L is the cooled lengm and At is — t,) ... [Pg.566]

For condensing vapor in vertical downflow, in which the hquid flows as a thin annular film, the frictional contribution to the pressure drop may be estimated based on the gas flow alone, using the friction factor plotted in Fig. 6-31, where Re is the Reynolds number for the gas flowing alone (Bergelin, et al., Proc. Heat Transfer Fluid Mech. Inst., ASME, June 22-24, 1949, pp. 19-28). [Pg.655]

The drag coefficients for disks (flat side perpendicular to the direction of motion) and for cylinders (infinite length with axis perpendicular to the direclion of motion) are given in Fig. 6-57 as a Function of Reynolds number. The effect of length-to-diameter ratio for cylinders in the Newton s law region is reported by Knudsen and Katz Fluid Mechanics and Heat Transfer, McGraw-Hill, New York, 1958). [Pg.677]

Pressure drop due to hydrostatic head can be calculated from hquid holdup B.]. For nonfoaming dilute aqueous solutions, R] can be estimated from f i = 1/[1 + 2.5(V/E)(pi/pJ ]. Liquid holdup, which represents the ratio of liqmd-only velocity to actual hquid velocity, also appears to be the principal determinant of the convective coefficient in the boiling zone (Dengler, Sc.D. thesis, MIT, 1952). In other words, the convective coefficient is that calciilated from Eq. (5-50) by using the liquid-only velocity divided by in the Reynolds number. Nucleate boiling augments conveclive heat transfer, primarily when AT s are high and the convective coefficient is low [Chen, Ind Eng. Chem. Process Des. Dev., 5, 322 (1966)]. [Pg.1044]

Heat Exchangers Since most cryogens, with the exception of helium 11 behave as classical fluids, weU-estabhshed principles of mechanics and thermodynamics at ambient temperature also apply for ctyogens. Thus, similar conventional heat transfer correlations have been formulated for simple low-temperature heat exchangers. These correlations are described in terms of well-known dimensionless quantities such as the Nusselt, Reynolds, Prandtl, and Grashof numbers. [Pg.1131]

A droplet Nusselt number = 2, corresponding to pure conduction (Reynolds number = 0) to infinity, is employed for evaluating the coefficient of heat transfer. [Pg.1237]

Not only is the type of flow related to the impeller Reynolds number, but also such process performance characteristics as mixing time, impeller pumping rate, impeller power consumption, and heat- and mass-transfer coefficients can be correlated with this dimensionless group. [Pg.1629]

Heat Transfer In general, the fluid mechanics of the film on the mixer side of the heat transfer surface is a function of what happens at that surface rather than the fluid mechanics going on around the impeller zone. The impeller largely provides flow across and adjacent to the heat-transfer surface and that is the major consideration of the heat-transfer result obtained. Many of the correlations are in terms of traditional dimensionless groups in heat transfer, while the impeller performance is often expressed as the impeller Reynolds number. [Pg.1641]

The most comprehensive correlation for heat transfer to vertical baffle-type coils is for a disk flat-blade turbine over the Reynolds number range lO to (2)(10 ) ... [Pg.1642]

The value of tire heat transfer coefficient of die gas is dependent on die rate of flow of the gas, and on whether the gas is in streamline or turbulent flow. This factor depends on the flow rate of tire gas and on physical properties of the gas, namely the density and viscosity. In the application of models of chemical reactors in which gas-solid reactions are caiTied out, it is useful to define a dimensionless number criterion which can be used to determine the state of flow of the gas no matter what the physical dimensions of the reactor and its solid content. Such a criterion which is used is the Reynolds number of the gas. For example, the characteristic length in tire definition of this number when a gas is flowing along a mbe is the diameter of the tube. The value of the Reynolds number when the gas is in streamline, or linear flow, is less than about 2000, and above this number the gas is in mrbulent flow. For the flow... [Pg.277]

For low values of the Reynolds number, such as 10, where sn eamline flow should certainly apply, the Nusselt number has a value of about 2, and a typical value of the average heat transfer coefficient is 10 ". For a Reynolds number of 104, where the gas is certainly in turbulent flow, the value of the Nusselt number is typically 20. Hence there is only a difference of a factor of ten in the heat transfer coefficient between tlrese two extreme cases. [Pg.278]

Mass velocities are still much smaller than in production reactors, and Reynolds numbers based on particle diameter are frequently much less than 100. Consequently flow is not similar to that in commercial reactors, and heat and mass transfer are much poorer. [Pg.36]

Coolant flow is set by the designed temperature increase of the fluid and needed mass velocity or Reynolds number to maintain a high heat transfer coefficient on the shell side. Smaller flows combined with more baffles results in higher temperature increase on the shell side. Reacting fluid flows upwards in the tubes. This is usually the best plan to even out temperature bumps in the tube side and to minimize temperature feedback to avoid thermal runaway of exothermic reactions. [Pg.176]

Even the good heat transfer conditions turned out to be false, however, if the correlation derived for single cylinders by McAdams (1954) were extrapolated to Rep < 100. Nelson and Galloway (1975) pointed out that at low Reynolds numbers the real heat transfer coefficient could be four... [Pg.181]

Turboexpanders eurrently in operation range in size from about 1 hp to above 10,000 hp. In the small sizes, the problems are miniaturization, Reynolds Number effeets, heat transfer, seal, and meehanieal problems, and often inelude bearing and eritieal speed eoneerns. In intermediate sizes, these problems beeome less signifieant, but bearing rubbing speeds and vibration beeome inereasingly important. [Pg.14]

This chapter reviews the various types of impellers, die flow patterns generated by diese agitators, correlation of die dimensionless parameters (i.e., Reynolds number, Froude number, and Power number), scale-up of mixers, heat transfer coefficients of jacketed agitated vessels, and die time required for heating or cooling diese vessels. [Pg.553]

At a given Reynolds number, heat transfer coefficients of coils, particularly with turbulent flow, are higher than those of long, straight pipes, due to friction. This also applies to flow through an annular jacket with spiral baffling. [Pg.621]

Figure 5-41 indicates the mixing correlation exponent, X, as related to power per unit volume ratio for heat transfer scale-up. The exponent x is given in Table 5-6 for the systems shown, and is the exponent of the Reynolds number term, or the slope of the... [Pg.332]

Tube side Determine heat transfer coefficient from Figure 10-46 (using tube-side curve) at Reynold s number calculated for pressure drop evaluation. If the hj calculated exceeds 300 for organics (Figure 10-103), use a value of 300 and correct to outside coefficient, hj. ... [Pg.199]


See other pages where Reynolds number heat transfer is mentioned: [Pg.169]    [Pg.268]    [Pg.54]    [Pg.91]    [Pg.483]    [Pg.490]    [Pg.510]    [Pg.517]    [Pg.565]    [Pg.646]    [Pg.1037]    [Pg.278]    [Pg.166]    [Pg.209]    [Pg.10]    [Pg.58]    [Pg.62]    [Pg.476]   
See also in sourсe #XX -- [ Pg.116 , Pg.117 , Pg.118 , Pg.119 , Pg.120 , Pg.121 , Pg.122 , Pg.123 , Pg.124 , Pg.125 ]




SEARCH



Reynold

Reynolds number

Transference numbers

© 2024 chempedia.info