Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Natural convection heat transfer

The kind of convective heat transfer—forced convection or natural (at floor, wall, or ceiling)—must be considered and taken into account by selecting appropriate values for the convective heat transfer coefficient see Eq. (11.14)). Thus, the heat transfer coefficient implicitly assumes the flow situation at the surface. Normally, coefficients for convective heat transfer are considered as a preset constant parameter (the coefficient may be defined as variable, however, depending on other parameters). Therefore, the selection of appropriate values is crucial. Values for heat transfer coefficients can be found in several references a comprehensive summary is given in Daskalaki. ... [Pg.1063]

To reduce heat transfer by convection an insulant should have a structure of a cellular nature or with a high void content. Small cells or voids inhibit convection within them and are thus less prone to excite or agitate neighboring cells. [Pg.111]

Convection. Heat transfer by convection arises from the mixing of elements of fluid. If this mixing occurs as a result of density differences as, for example, when a pool of liquid is heated from below, the process is known as natural convection. If the mixing results from eddy movement in the fluid, for example when a fluid flows through a pipe heated on the outside, it is called forced convection. It is important to note that convection requires mixing of fluid elements, and is not governed by temperature difference alone as is the case in conduction and radiation. [Pg.381]

HEAT TRANSFER BY CONVECTION 9.4.1. Natural and forced convection... [Pg.414]

Heat transfer by convection occurs as a result of the movement of fluid on a macroscopic scale in the form of eddies or circulating currents. If the currents arise from the heat transfer process itself, natural convection occurs, such as in the heating of a vessel containing liquid by means of a heat source situated beneath it. The liquid at the bottom of the vessel becomes heated and expands and rises because its density has become less than that of the remaining liquid. Cold liquid of higher density takes its place and a circulating current is thus set up. [Pg.414]

If a beaker containing water rests on a hot plate, the water at the bottom of the beaker becomes hotter than that at the top. Since the density of the hot water is lower than that of the cold, the water in the bottom rises and heat is transferred by natural convection. In the same way air in contact with a hot plate will be heated by natural convection currents, the air near the surface being hotter and of lower density than that some distance away. In both of these cases there is no external agency providing forced convection currents, and the transfer of heat occurs at a correspondingly lower rate since the natural convection currents move rather slowly. [Pg.435]

Conductive and Convective Heat Transfer, Thermo Explosion by. There are three fundamental types of heat transfer conduction, convection radiation. All three types may occur at the same time, but it is advisable to consider the heat thransfer by each type in any particular case. Conduction is the transfer of heat from one part of a body to another part of the same body, or from one body to another in physical contact with it, without appreciable displacement of the particles of either body. Convection is the transfer of heat from one point to another within a fluid, gas or liquid, by the mixing of one portion of the fluid with another. In natural convection, the motion of the fluid is entirely the result of differences in density resulting from temp differences in forced convection, the motion is produced by mechanical means. Radiation is the transfer of heat from one body to another, not in contact with it, by means of wave motion thru space (Ref 5)... [Pg.279]

Warrington, R.O., and R. F.. Powe The Transfer of Heat by Natural Convection Between Bodies and Their Enclosures, Int. J. Heat Mass Transfer, vol. 28, p. 319, 1985... [Pg.372]

Transfer of heat by physical mixing of the hot and cold portions of a fluid is known as heat transfer by convection The mixing can occur as a result of density differences alone, as in natural convection, or as a result of mechanically induced agitation, as in forced convection. [Pg.582]

Convection is the transfer of energy by conduction and radiation in moving, fluid media. The motion of the fluid is an essential part of convective heat transfer. A key step in calculating the rate of heat transfer by convection is the calculation of the heat-transfer coefficient. This section focuses on the estimation of heat-transfer coefficients for natural and forced convection. The conservation equations for mass, momentum, and energy, as presented in Sec. 6, can be used to calculate the rate of convective heat transfer. Our approach in this section is to rely on correlations. [Pg.7]

Heat transfer to a laminar flow in an annulus is complicated by the fact that both the velocity and thermal profiles are simultaneously developing near the entrance and, often, over the length of the heated channel. Natural convection may also be a factor. It is usually conservative (i.e., predicted heat-transfer coefficients are lower than those experienced) to use equations for the fully developed flow. [Pg.511]

A large tank of water is heated by natural convection from submerged horizontal steam pipes. The pipes are 3-in Schedule 40 steel. When the steam pressure is atmospheric and the water temperature is 80°F, what is the rate of heat transfer to the water in Btu per hour per foot of pipe length ... [Pg.373]

Safety The safety design objective is to provide the capability to reject core decay heat relying only on passive (natural) means of heat transfer (conduction, convection, and radiation) without the use of any active safety systems. [Pg.212]

Heat transfer by convection occurs in liquids and gases where there is a velocity field caused by extorted fluid motion or by natural fluid motion caused by a difference in density. The former case involves forced convection, and the latter case free convection. Combined convection occurs when both forced and free convection are present. The convection coefficient of surface heat transfer, a, defining the heat exchange in the contact boundary layer between fluid and soUd, is determined. Coefficient or is often expressed by equations containing criteria numbers, such as those of Nusselt (Nu), Prandtl (Pr), Reynolds (Re) and Grashof(Gr) ... [Pg.12]

Q is the amount of heat in Joules that is transferred from surroundings into the system. Although the temperature difference is the driving force, the energy transfer is Q in Joules of energy. The heat transfer is transient in nature. The study of heat transfer is a separate subject in itself and is discussed in detail elsewhere [7] and in Chapter 11. The modes of heat transfer, conduction, convection, and radiation and of late microscale mechanisms such as wave heat conduction is discussed in Chapter 9. [Pg.322]

Heat transfer from convection occurs in a medium due to molecular motion in a fluid or gas. The flow can be natural, from changes in density... [Pg.98]

Convection Heat Transfer. Convective heat transfer occurs when heat is transferred from a soHd surface to a moving fluid owing to the temperature difference between the soHd and fluid. Convective heat transfer depends on several factors, such as temperature difference between soHd and fluid, fluid velocity, fluid thermal conductivity, turbulence level of the moving fluid, surface roughness of the soHd surface, etc. Owing to the complex nature of convective heat transfer, experimental tests are often needed to determine the convective heat-transfer performance of a given system. Such experimental data are often presented in the form of dimensionless correlations. [Pg.482]

Convective heat transfer is classified as forced convection and natural (or free) convection. The former results from the forced flow of fluid caused by an external means such as a pump, fan, blower, agitator, mixer, etc. In the natural convection, flow is caused by density difference resulting from a temperature gradient within the fluid. An example of the principle of natural convection is illustrated by a heated vertical plate in quiescent air. [Pg.482]

In the forced convection heat transfer, the heat-transfer coefficient, mainly depends on the fluid velocity because the contribution from natural convection is negligibly small. The dependence of the heat-transfer coefficient, on fluid velocity, which has been observed empirically (1—3), for laminar flow inside tubes, is h for turbulent flow inside tubes, h and for flow outside tubes, h. Flow may be classified as laminar or... [Pg.483]

The heat pipe has properties of iaterest to equipmeat desigaers. Oae is the teadeacy to assume a aeady isothermal coaditioa while carrying useful quantities of thermal power. A typical heat pipe may require as Htfle as one thousandth the temperature differential needed by a copper rod to transfer a given amount of power between two poiats. Eor example, whea a heat pipe and a copper rod of the same diameter and length are heated to the same iaput temperature (ca 750°C) and allowed to dissipate the power ia the air by radiatioa and natural convection, the temperature differential along the rod is 27°C and the power flow is 75 W. The heat pipe temperature differential was less than 1°C the power was 300 W. That is, the ratio of effective thermal conductance is ca 1200 1. [Pg.511]

Convection is the transfer of heat from one point to another within a fluid, gas, or liquid by the mixing of one portion of the fluid with another. In natural convection, the motion of the flmd is entirely the result of differences in density resiilting from temperature differences in forced convection, the motion is produced by mechanical means. When the forced velocity is relatively low, it should be reahzed that Tree-convection factors, such as density and temperature difference, may have an important influence. [Pg.554]


See other pages where Natural convection heat transfer is mentioned: [Pg.87]    [Pg.463]    [Pg.161]    [Pg.438]    [Pg.403]    [Pg.32]    [Pg.463]    [Pg.463]    [Pg.151]    [Pg.1030]    [Pg.1446]    [Pg.438]    [Pg.349]    [Pg.512]    [Pg.216]    [Pg.369]    [Pg.165]    [Pg.302]    [Pg.496]    [Pg.502]    [Pg.347]   
See also in sourсe #XX -- [ Pg.504 , Pg.533 , Pg.534 , Pg.535 , Pg.536 , Pg.537 , Pg.538 , Pg.539 , Pg.540 , Pg.541 , Pg.542 ]




SEARCH



Channel flow, natural convection heat transfer

Convective heating

Heat convection natural

Heat convective

Heat transfer in natural convection

Heat transfer natural convective

Heat transfer natural convective

Heat-transfer coefficients for natural convection

Natural convection

Natural convection heat transfer coefficients, example

Natural convection, heat-transfer coefficients

Natural convection, single-phase heat transfer

© 2024 chempedia.info