Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heat Transfer Hydrogen

Palmer (1571) made special use of H bonding in his explanation of the conductivity of alcohols and glycols. Two contributions by H bonds are visualized one is an orientation of the molecules along the path of heat flow, and the other is the addition of another mechanism for heat transfer. Hydrogen bonds break at the hot side of the tempera-... [Pg.56]

The reboiler must supply heat to boil-up the vapor, V, of the stripping section which in the pilot column amounts to 434 watts (approximately 25 BTU/min), Since this quantity of heat is rather large in terms of liquid hydrogen consumption, it is advisable to make use of a condensing vapor to achieve maximum heat transfer. Hydrogen is the obvious medium to use in this cycle. [Pg.470]

Hot product char carries heat into the entrained bed to obtain the high heat-transfer rates required. Feed coal must be dried and pulverized. A portion of the char recovered from the reactor product stream is cooled and discharged as product. The remainder is reheated to 650—870°C in a char heater blown with air. Gases from the reactor are cooled and scmbbed free of product tar. Hydrogen sulfide is removed from the gas, and a portion is recycled to serve as the entrainment medium. [Pg.94]

Tetralin. Tetralin is a trade name of Du Pont for 1,2,3,4-tetrahydronapththalene [119-64-2] C qH 2- Tetralin, a derivative of naphthalene, is made by hydrogenating one ring completely and leaving the other unchanged. Tetralin is produced by several manufacturers and is one of the oldest heat-transfer fluids. Tetralin can be used both in Hquid- and vapor-phase systems. The normal boiling point is 207°C. [Pg.504]

Tables 2,3, and 4 outline many of the physical and thermodynamic properties ofpara- and normal hydrogen in the sohd, hquid, and gaseous states, respectively. Extensive tabulations of all the thermodynamic and transport properties hsted in these tables from the triple point to 3000 K and at 0.01—100 MPa (1—14,500 psi) are available (5,39). Additional properties, including accommodation coefficients, thermal diffusivity, virial coefficients, index of refraction, Joule-Thorns on coefficients, Prandti numbers, vapor pressures, infrared absorption, and heat transfer and thermal transpiration parameters are also available (5,40). Thermodynamic properties for hydrogen at 300—20,000 K and 10 Pa to 10.4 MPa (lO " -103 atm) (41) and transport properties at 1,000—30,000 K and 0.1—3.0 MPa (1—30 atm) (42) have been compiled. Enthalpy—entropy tabulations for hydrogen over the range 3—100,000 K and 0.001—101.3 MPa (0.01—1000 atm) have been made (43). Many physical properties for the other isotopes of hydrogen (deuterium and tritium) have also been compiled (44). Tables 2,3, and 4 outline many of the physical and thermodynamic properties ofpara- and normal hydrogen in the sohd, hquid, and gaseous states, respectively. Extensive tabulations of all the thermodynamic and transport properties hsted in these tables from the triple point to 3000 K and at 0.01—100 MPa (1—14,500 psi) are available (5,39). Additional properties, including accommodation coefficients, thermal diffusivity, virial coefficients, index of refraction, Joule-Thorns on coefficients, Prandti numbers, vapor pressures, infrared absorption, and heat transfer and thermal transpiration parameters are also available (5,40). Thermodynamic properties for hydrogen at 300—20,000 K and 10 Pa to 10.4 MPa (lO " -103 atm) (41) and transport properties at 1,000—30,000 K and 0.1—3.0 MPa (1—30 atm) (42) have been compiled. Enthalpy—entropy tabulations for hydrogen over the range 3—100,000 K and 0.001—101.3 MPa (0.01—1000 atm) have been made (43). Many physical properties for the other isotopes of hydrogen (deuterium and tritium) have also been compiled (44).
A mathematical model of the operating characteristics of a modem HLW storage tank has been developed (60). This model correlates experimental data for the rate of radiolytic destmction of nitric acid, the rate of hydrogen generation owing to radiolysis of water, and cooling coil heat transfer. These are all functions of nitric acid concentration and air-lift circulator operation. [Pg.207]

Reductive alkylations and aminations requite pressure-rated reaction vessels and hiUy contained and blanketed support equipment. Nitrile hydrogenations are similar in thein requirements. Arylamine hydrogenations have historically required very high pressure vessel materials of constmction. A nominal breakpoint of 8 MPa (- 1200 psi) requites yet heavier wall constmction and correspondingly more expensive hydrogen pressurization. Heat transfer must be adequate, for the heat of reaction in arylamine ring reduction is - 50 kJ/mol (12 kcal/mol) (59). Solvents employed to maintain catalyst activity and improve heat-transfer efficiency reduce effective hydrogen partial pressures and requite fractionation from product and recycle to prove cost-effective. [Pg.211]

In disproportionation, rosin is heated over a catalyst to transfer hydrogen, yielding dehydro (5) and dihydro (8) resin acids. The dehydro acids are stabilized by the aromatic ring the dihydro acids contain only an isolated double bond in place of the less stable conjugated double bonds. [Pg.139]

As in the case of biphenyl, current worldwide production figures for terphenyls are not readily obtainable, but the volume is probably around 6.8—8.2 million kg/yr. Currently, most of the terphenyl produced is converted to a partially hydrogenated form. U.S. production of terphenyls has remained steady at several thousand metric tons per year over the past decade. The 1991 small lot price for mixed terphenyls was about 3.89/kg whereas the specially fractionated heat-transfer-grade terphenyl—quaterphenyl mixture sold as Therminol 75 heat-transfer fluid was priced around 6.93/kg. Partially hydrogenated mixed terphenyls were priced in the 6.05—7.48/kg range depending on quantity and grade. [Pg.117]

Biphenyl, terphenyl, and their alkyl or hydrogenated derivatives generally serve markets where price and performance, rather than composition, is the customer s primary concern. Performance standards for heat-transfer appHcations are usually set by the fluid suppHer. The biphenyl—diphenyl oxide eutectic (26.5% biphenyl, 73.5% DPO) represents a special case. This composition has become a widely recogni2ed standard vapor-phase heat-transfer medium. It is sold throughout the world under various trademarks. In the United States, Dow (Dowtherm A) and Monsanto (Therminol VP-1) are the primary suppHers. Alkylated biphenyls and partially hydrogenated terphenyls serving the dielectric and carbonless copy paper dye solvent markets likewise are sold primarily on the basis of price and performance characteristics jointly agreed on by producer and user. [Pg.117]

In work with the hydrogen chloride-air-water system, Dobratz, Moore, Barnard, and Mever [Chem. Eng. Prog., 49, 611 (1953)] using a cociirrent-flowsystem found that /cg (Eig. 14-77) instead of the 0.8 power as indicated by the Gilliland equation. Heat-transfer coefficients were also determined in this study. The radical increase in heat-transfer rate in the range of G = 30 kg/(s m ) [20,000 lb/(h fH)] was similar to that obsei ved by Tepe and Mueller [Chem. Eng. Prog., 43, 267 (1947)] in condensation inside tubes. [Pg.1402]

Heat evolution is 0.94 to 1.10 kcaJ/(kg oil)(unit drop of IV) (1.69 to 1.98 Btu/[lbm oil][unit drop of IV]). Because space for heat-transfer coils in the vessel is limited, the process is organized to give a maximum IV drop of about 2.0/min. The rate of reaction, of course, drops off rapidly as the reaction proceeds, so a process may take several hours. The end point of a hydrogenation is a specified IV of the prod-... [Pg.2113]

Several methods ean be employed to eonvert eoal into liquids, with or without the addition of a solvent or vehiele. Those methods which rely on simple pyrolysis or carbonization produce some liquids, but the mam produet is eoke or char Extraction yields can be dramatically increased by heating the coal over 350°C in heavy solvents sueh as anthraeene or eoal-tar oils, sometimes with applied hydrogen pressure, or the addition of a eatalyst Solvent eomponents whieh are espeeially benefieial to the dissolution and stability of the produets eontain saturated aromatic structures, for example, as found in 1,2,3,4 tctrahydronaphthalene Ilydroaromatie eompounds are known to transfer hydrogen atoms to the coal molecules and, thus, prevent polymerization... [Pg.211]

GASFLOW models geometrically complex containments, buildings, and ventilation systems with multiple compartments and internal structures. It calculates gas and aerosol behavior of low-speed buoyancy driven flows, diffusion-dominated flows, and turbulent flows dunng deflagrations. It models condensation in the bulk fluid regions heat transfer to wall and internal stmetures by convection, radiation, and condensation chemical kinetics of combustion of hydrogen or hydrocarbon.s fluid turbulence and the transport, deposition, and entrainment of discrete particles. [Pg.354]

The carbon/hydrogen ratio of gas is considerably lower than oil or coal, which results in a flame of very low luminosity. Radiation from the flame is therefore low and furnace design must allow for heat transfer to be primarily by convection and conduction, together with re-radiation from hot surfaces. [Pg.263]

Although widely used in the past and still used in special cases, the industrial sulfation with chlorosulfonic acid presents several problems which have caused the decline of this technique in favor of the more advantageous sulfation method with sulfur trioxide. These problems consist of evolution of the highly corrosive hydrogen chloride, heat transfer characteristics of the reaction, and the comparatively high level of chloride ion in the sulfated product compared with alcohol and alcohol ether sulfates obtained with sulfur trioxide. [Pg.228]


See other pages where Heat Transfer Hydrogen is mentioned: [Pg.241]    [Pg.490]    [Pg.135]    [Pg.198]    [Pg.22]    [Pg.421]    [Pg.429]    [Pg.462]    [Pg.332]    [Pg.294]    [Pg.259]    [Pg.260]    [Pg.520]    [Pg.168]    [Pg.115]    [Pg.116]    [Pg.119]    [Pg.271]    [Pg.441]    [Pg.1133]    [Pg.2120]    [Pg.2377]    [Pg.150]    [Pg.487]    [Pg.274]    [Pg.498]    [Pg.296]    [Pg.228]    [Pg.552]    [Pg.120]    [Pg.171]    [Pg.137]    [Pg.238]    [Pg.632]   
See also in sourсe #XX -- [ Pg.6 , Pg.509 ]




SEARCH



Hydrogen heats

Hydrogenation, heat transfer

Hydrogenation, heat transfer

© 2024 chempedia.info