Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Headspace analysis styrene monomers

HS-GC methods have equally been used for chromatographic analysis of residual volatile substances in PS [219]. In particular, various methods have been described for the determination of styrene monomer in PS by solution headspace analysis [204,220]. Residual styrene monomer in PS granules can be determined in about 100 min in DMF solution using n-butylbenzene as an internal standard for this monomer solid headspace sampling is considerably less suitable as over 20 h are required to reach equilibrium [204]. Shanks [221] has determined residual styrene and butadiene in polymers with an analytical sensitivity of 0.05 to 5 ppm by SHS analysis of polymer solutions. The method development for determination of residual styrene monomer in PS samples and of residual solvent (toluene) in a printed laminated plastic film by HS-GC was illustrated [207], Less volatile monomers such as styrene (b.p. 145 °C) and 2-ethylhexyl acrylate (b.p. 214 °C) may not be determined using headspace techniques with the same sensitivities realised for more volatile monomers. Steichen [216] has reported a 600-fold increase in headspace sensitivity for the analysis of residual 2-ethylhexyl acrylate by adding water to the solution in dimethylacetamide. [Pg.205]

The more volatile monomers vinyl chloride, butadiene, and acrylonitrile can be determined by dissolution of the polymer and analysis of the equilibrated headspace above the polymer solution. By this method it was possible to determine vinyl chloride and bntadiene at the 0.05 ppm level and acrylonitrile down to 0.5 ppm. The injection of water into polymer solutions containing styrene and 2-ethylhexyl acrylate monomers prior to headspace analysis greatly enhanced the detection capability for these monomers making it possible to determine styrene down to 1 ppm and 2-ethylhexyl acrylate at 5 ppm. Incorporation of polymer into the calibration standards compensates for the effect which the polymer matrix has upon the equilibrium partitioning of the monomer between the solution and head space. The relative precision and error in the determination of these monomers near the quantitation limit was found to be less than 7%. [Pg.313]

Some of the applications of headspace analysis include the determination of vinyl chloride and other impurities in PVC, styrene monomer in PS, methyl methacrylate monomer in polyacrylates, ethylene in polyethylene, acrylonitrile monomer in ABS terpolymers, epichlorohydrin in epoxy resins, and residual solvents in polymers (see next). [Pg.204]

A further apparatus for carrying out solid polymer headspace analysis of PS for styrene monomer and aromatic volatiles has been described by Crompton and co-workers [1,2]. In this apparatus the polymer is heated to 300 °C in the absence of solvents, prior to its examination by GC. The apparatus is illustrated in Figure 5.3. [Pg.204]

Shanks has determined residual butadiene and styrene in polymers with an analytical sensitivity of 0.05 to 5 ppm by analysis of the equilibrated headspace over polymer solutions and determined acrylonitrile, alpha-methyl styrene and styrene monomers by headspace analysis over heated solid polymer samples. [Pg.69]

Several SP materials have been used for the extraction of FRs from aqueous samples, plasma and milk (Table 31.7). Similar materials have been used for all FRs. Typical SP materials include Ci8 and Cg bonded to porous silica, highly cross-linked poly(styrene divinylbenzene) (PS-DVB), and graphitized carbon black (GCB). It is also possible to use XAD-2 resin for extraction of various FRs, pesticides, and plastic additives from large volumes of water (100 1). The analytes can then be either eluted from the resin by acetone hexane mixture, or Soxhlet extracted with acetone and hexane. For a specific determination of diphenyl phosphate in water and urine, molecularly imprinted polymers have been used in the solid phase extraction. The imprinted polymer was prepared using 2-vinylpyridine as the functional monomer, ethylene glycol dimethacrylate as the cross linker, and a structural analog of the analyte as the template molecule. Elution was done with methanol triethylamine as solvent. Also solid phase microextraction (SPME) has been applied in the analysis of PBDEs in water samples. The extraction has been done from a headspace of a heated water sample (100°C) using polydimethylsiloxane (PDMS) or polyacryl (PA) as the fiber material. ... [Pg.1216]


See other pages where Headspace analysis styrene monomers is mentioned: [Pg.151]    [Pg.196]    [Pg.37]    [Pg.50]    [Pg.205]    [Pg.1597]   
See also in sourсe #XX -- [ Pg.313 , Pg.314 ]




SEARCH



Headspace

Headspace analysis

Monomers, analysis

Styrene monomer

© 2024 chempedia.info