Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hartree self-consistent calculation

Hoffman has published an article describing an Excel worksheet that carries out the Hartree self-consistent calculation on the ground state of helium Obtain and use this spreadsheet to carry out the calculation and make an accurate plot of the radial factor of the approximate orbital obtained. Compare it with a plot of the orbital obtained with the simple variational calculation in the chapter. [Pg.821]

Fig. 3.6 Binding energy curves for the hydrogen molecule (lower panel). HF and HL are the Hartree-Fock and Heitler-London predictions, whereas LDA and LSDA are those for local density and local spin density approximations respectively. The upper panel gives the local magnetic moment within the LSDA self-consistent calculations. (After Gunnarsson and Lundquist (1976).)... Fig. 3.6 Binding energy curves for the hydrogen molecule (lower panel). HF and HL are the Hartree-Fock and Heitler-London predictions, whereas LDA and LSDA are those for local density and local spin density approximations respectively. The upper panel gives the local magnetic moment within the LSDA self-consistent calculations. (After Gunnarsson and Lundquist (1976).)...
We adopt the same chemisorption model as in our previous work [3], which within the unrestricted Hartree-Fock approximation involves a self-consistent calculation of the electronic charge on the adatom. The basis elements needed for the calculation are the... [Pg.789]

First principles MO calculations were done by the Hartree-Fodc-Slater (HFS) method using the DV-Xa method. The DV-Xa method was first developed to solve the energy-band problems by D. E. Ellis and G. S. Painter [18] and was then applied to the cluster calculation by F. W. Averill and D. E. Ellis [19]. Self-consistent calculations were developed by A. Rosen et al. [Pg.444]

FIGURE 5.12 Dependence of radial probability densities on distance from the nucleus for Hartree orbitals in argon with n = 1, 2, 3. The results were obtained from self-consistent calculations using Hartree s method. Distance is plotted in the same dimensionless variable used in Figure 5.10 to facilitate comparison with the results for hydrogen. The fact that the radial probability density for all orbitals with the same value of n have maxima very near one another suggests that the electrons are arranged in "shells" described by these orbitals. [Pg.186]

The application of density functional theory to isolated, organic molecules is still in relative infancy compared with the use of Hartree-Fock methods. There continues to be a steady stream of publications designed to assess the performance of the various approaches to DFT. As we have discussed there is a plethora of ways in which density functional theory can be implemented with different functional forms for the basis set (Gaussians, Slater type orbitals, or numerical), different expressions for the exchange and correlation contributions within the local density approximation, different expressions for the gradient corrections and different ways to solve the Kohn-Sham equations to achieve self-consistency. This contrasts with the situation for Hartree-Fock calculations, wlrich mostly use one of a series of tried and tested Gaussian basis sets and where there is a substantial body of literature to help choose the most appropriate method for incorporating post-Hartree-Fock methods, should that be desired. [Pg.157]

A configuration interaction calculation uses molecular orbitals that have been optimized typically with a Hartree-Fock (FIF) calculation. Generalized valence bond (GVB) and multi-configuration self-consistent field (MCSCF) calculations can also be used as a starting point for a configuration interaction calculation. [Pg.217]

Introductory descriptions of Hartree-Fock calculations [often using Rootaan s self-consistent field (SCF) method] focus on singlet systems for which all electron spins are paired. By assuming that the calculation is restricted to two electrons per occupied orbital, the computation can be done more efficiently. This is often referred to as a spin-restricted Hartree-Fock calculation or RHF. [Pg.227]

Ab initio calculations can be performed at the Hartree-Fock level of approximation, equivalent to a self-consistent-field (SCF) calculation, or at a post Hartree-Fock level which includes the effects of correlation — defined to be everything that the Hartree-Fock level of approximation leaves out of a non-relativistic solution to the Schrodinger equation (within the clamped-nuclei Born-Oppenhe-imer approximation). [Pg.251]

In the RISM-SCF theory, the statistical solvent distribution around the solute is determined by the electronic structure of the solute, whereas the electronic strucmre of the solute is influenced by the surrounding solvent distribution. Therefore, the ab initio MO calculation and the RISM equation must be solved in a self-consistent manner. It is noted that SCF (self-consistent field) applies not only to the electronic structure calculation but to the whole system, e.g., a self-consistent treatment of electronic structure and solvent distribution. The MO part of the method can be readily extended to the more sophisticated levels beyond Hartree-Fock (HF), such as configuration interaction (Cl) and coupled cluster (CC). [Pg.421]

Ab initio calculations are iterative procedures based on self-consistent field (SCF) methods. Normally, calculations are approached by the Hartree-Fock closed-shell approximation, which treats a single electron at a time interacting with an aggregate of all the other electrons. Self-consistency is achieved by a procedure in which a set of orbitals is assumed, and the electron-electron repulsion is calculated this energy is then used to calculate a new set of orbitals, which in turn are used to calculate a new repulsive energy. The process is continued until convergence occurs and self-consistency is achieved." ... [Pg.25]

In actual practice, self-consistent Kohn-Sham DFT calculations are performed in an iterative manner that is analogous to an SCF computation. This simiBarity to the methodology of Hartree-Fock theory was pointed out by Kohn and Sham. [Pg.275]

Table X gives an idea of the strength of the various expansion methods, and it shows that, by using the principal term only, one can hardly expect to reach even the above-mentioned chemical margin, even if the wave function W gO(D) is actually very close in the helium case. This means that one has to rely on expansions in complete sets, and the construction of the modern electronic computers has fortunately greatly facilitated the numerical solution of secular equations of high order and the calculation of the matrix elements involved. For atoms, the development will probably go very fast, but, for small molecules one has first to program the conventional Hartree-Fock scheme in a fully self-consistent way for the computers, before the next step can be taken. For large molecules and crystals, the entire situation is much more complicated, and it will hence probably take a rather long time before one can hope to get a detailed understanding of the correlation phenomena in these systems. Table X gives an idea of the strength of the various expansion methods, and it shows that, by using the principal term only, one can hardly expect to reach even the above-mentioned chemical margin, even if the wave function W gO(D) is actually very close in the helium case. This means that one has to rely on expansions in complete sets, and the construction of the modern electronic computers has fortunately greatly facilitated the numerical solution of secular equations of high order and the calculation of the matrix elements involved. For atoms, the development will probably go very fast, but, for small molecules one has first to program the conventional Hartree-Fock scheme in a fully self-consistent way for the computers, before the next step can be taken. For large molecules and crystals, the entire situation is much more complicated, and it will hence probably take a rather long time before one can hope to get a detailed understanding of the correlation phenomena in these systems.
For planar unsaturated and aromatic molecules, many MO calculations have been made by treating the a and n electrons separately. It is assumed that the o orbitals can be treated as localized bonds and the calculations involve only the tt electrons. The first such calculations were made by Hiickel such calculations are often called Hiickel molecular orbital (HMO) calculations Because electron-electron repulsions are either neglected or averaged out in the HMO method, another approach, the self-consistent field (SCF), or Hartree-Fock (HF), method, was devised. Although these methods give many useful results for planar unsaturated and aromatic molecules, they are often unsuccessful for other molecules it would obviously be better if all electrons, both a and it, could be included in the calculations. The development of modem computers has now made this possible. Many such calculations have been made" using a number of methods, among them an extension of the Hiickel method (EHMO) and the application of the SCF method to all valence electrons. ... [Pg.34]

The metric term Eq. (2.8) is important for all cases in which the manifold M has non-zero curvature and is thus nonlinear, e.g. in the cases of Time-Dependent Hartree-Fock (TDHF) and Time-Dependent Multi-Configurational Self-Consistent Field (TDMCSCF) c culations. In such situations the metric tensor varies from point to point and has a nontrivial effect on the time evolution. It plays the role of a time-dependent force (somewhat like the location-dependent gravitational force which arises in general relativity from the curvature of space-time). In the case of flat i.e. linear manifolds, as are found in Time-Dependent Configuration Interaction (TDCI) calculations, the metric is constant and does not have a significant effect on the dynamics. [Pg.223]

If we except the Density Functional Theory and Coupled Clusters treatments (see, for example, reference [1] and references therein), the Configuration Interaction (Cl) and the Many-Body-Perturbation-Theory (MBPT) [2] approaches are the most widely-used methods to deal with the correlation problem in computational chemistry. The MBPT approach based on an HF-SCF (Hartree-Fock Self-Consistent Field) single reference taking RHF (Restricted Hartree-Fock) [3] or UHF (Unrestricted Hartree-Fock ) orbitals [4-6] has been particularly developed, at various order of perturbation n, leading to the widespread MPw or UMPw treatments when a Moller-Plesset (MP) partition of the electronic Hamiltonian is considered [7]. The implementation of such methods in various codes and the large distribution of some of them as black boxes make the MPn theories a common way for the non-specialist to tentatively include, with more or less relevancy, correlation effects in the calculations. [Pg.39]

Besides the elementary properties of index permutational symmetry considered in eq. (7), and intrinsic point group symmetry of a given tensor accounted for in eqs. (8)-(14), much more powerful group-theoretical tools [6] can be developed to speed up coupled Hartree-Fock (CHF) calculations [7-11] of hyperpolarizabilities, which are nowadays almost routinely periformed in a number of studies dealing with non linear response of molecular systems [12-35], in particular at the self-consistent-field (SCF) level of accuracy. [Pg.281]


See other pages where Hartree self-consistent calculation is mentioned: [Pg.29]    [Pg.184]    [Pg.264]    [Pg.152]    [Pg.308]    [Pg.34]    [Pg.93]    [Pg.291]    [Pg.111]    [Pg.129]    [Pg.146]    [Pg.148]    [Pg.439]    [Pg.188]    [Pg.33]    [Pg.74]    [Pg.130]    [Pg.133]    [Pg.20]    [Pg.194]    [Pg.81]    [Pg.46]    [Pg.102]    [Pg.108]    [Pg.269]    [Pg.710]    [Pg.148]    [Pg.219]    [Pg.388]    [Pg.265]    [Pg.36]   
See also in sourсe #XX -- [ Pg.108 ]




SEARCH



Hartree calculation

Self-consistent calculations

© 2024 chempedia.info