Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hartree-Fock equations/theory

The first two kinds of terms are called derivative integrals, they are the derivatives of integrals that are well known in molecular structure theory, and they are easy to evaluate. Terms of the third kind pose a problem, and we have to solve a set of equations called the coupled Hartree-Fock equations in order to find them. The coupled Hartree-Fock method is far from new one of the earliest papers is that of Gerratt and Mills. [Pg.240]

In the Hartree-Fock approach, the many-body wave function in form of a Slater determinant plays the key role in the theory. For instance, the Hartree-Fock equations are derived by minimization of the total energy expressed in terms of this determinantal wave function. In density functional theory (3,4), the fundamental role is taken over by an observable quantity, the electron density. An important theorem of density functional theory states that the correct ground state density, n(r), determines rigorously all electronic properties of the system, in particular its total energy. The totd energy of a system can be expressed as a functional of the density n (r) and this functional, E[n (r)], is minimized by the ground state density. [Pg.50]

The inherent problems associated with the computation of the properties of solids have been reduced by a computational technique called Density Functional Theory. This approach to the calculation of the properties of solids again stems from solid-state physics. In Hartree-Fock equations the N electrons need to be specified by 3/V variables, indicating the position of each electron in space. The density functional theory replaces these with just the electron density at a point, specified by just three variables. In the commonest formalism of the theory, due to Kohn and Sham, called the local density approximation (LDA), noninteracting electrons move in an effective potential that is described in terms of a uniform electron gas. Density functional theory is now widely used for many chemical calculations, including the stabilities and bulk properties of solids, as well as defect formation energies and configurations in materials such as silicon, GaN, and Agl. At present, the excited states of solids are not well treated in this way. [Pg.77]

The most usual starting point for approximate solutions to the electronic Schrodinger equation is to make the orbital approximation. In Hartree-Fock (HF) theory the many-electron wavefunction is taken to be the antisymmetrized product of one-electron wavefunctions (spin-orbitals) ... [Pg.364]

The usual first ah initio approximation to the wave function leads to the Hartree-Fock theory, where V molecular spin orbitals (. with one for each electron. Then, asking the question what is the single determinant solution with the lowest possible energy, we obtain the Hartree-Fock equations and density, ... [Pg.276]

Note that the exchange term is of the form / y(r,r ) h(r )dr instead of the y (r) (r) type. Equation (1.12), known as the Hartree-Fock equation, is intractable except for the free-electron gas case. Hence the interest in sticking to the conceptually simple free-electron case as the basis for solving the more realistic case of electrons in periodic potentials. The question is how far can this approximation be driven. Landau s approach, known as the Fermi liquid theory, establishes that the electron-electron interactions do not appear to invalidate the one-electron picture, even when such interactions are strong, provided that the levels involved are located within kBT of Ep. For metals, electrons are distributed close to Ep according to the Fermi function f E) ... [Pg.59]

The Hy-CI function used for molecular systems is based on the MO theory, in which molecular orbitals are many-center linear combinations of one-center Cartesian Gaussians. These combinations are the solutions of Hartree-Fock equations. An alternative way is to employ directly in Cl and Hylleraas-CI expansions simple one-center basis functions instead of producing first the molecular orbitals. This is a subject of the valence bond theory (VB). This type of approach, called Hy-CIVB, has been proposed by Cencek et al. (Cencek et.al. 1991). In the full-CI or full-Hy-CI limit (all possible CSF-s generated from the given one-center basis set), MO and VB wave functions become identical each term in a MO-expansion is simply a linear combination of all terms from a VB-expansion. Due to the non-orthogonality of one-center functions the mathematical formalism of the VB theory for many-electron systems is rather cumbersome. However, for two-electron systems this drawback is not important and, moreover, the VB function seems in this case more natural. [Pg.189]

Hohenberg and Kohn have proved generally that the total ground state energy E of a collection of electrons in the presence of an externally applied potential (e.g. the valence electrons in the presence of the periodic potential due to the cores in a lattice), when no net magnetic moment is present, depends only on the average density of electrons n(R). By this proof, n(R) becomes the fundamental variable of the system (as it is in the Thomas-Fermi theory ). Variational minimization of the most general form of E, with respect to n lends to the Hartree-Fock equations formalism. [Pg.32]

Currently the time dependent DFT methods are becoming popular among the workers in the area of molecular modelling of TMCs. A comprehensive review of this area is recently given by renown workers in this field [116]. From this review one can clearly see [117] that the equations used for the density evolution in time are formally equivalent to those known in the time dependent Hartree-Fock (TDHF) theory [118-120] or in its equivalent - the random phase approximation (RPA) both well known for more than three quarters of a century (more recent references can be found in [36,121,122]). This allows to use the analysis performed for one of these equivalent theories to understand the features of others. [Pg.473]

Presented in this chapter is a verbal and pictorial description of Hartree-Fock MO theory. No equations will be given but reference will be made to appropriate parts of Appendix A where more details may be found. [Pg.20]

The most general version of Hartree-Fock (HF) theory, in which each electron is permitted to have its own spin and spatial wave function, is called unrestricted HF (UHF). Remarkably, when a UHF calculation is performed on most molecules which have an equal number of alpha and beta electrons, the spatial parts of the alpha and beta electrons are identical in pairs. Thus the picture that two electrons occupy the same MO with opposite spins comes naturally from this theory. A significant simplification in the solution of the Fock equations ensues if one imposes this natural outcome as a restriction. The form of HF theory where electrons are forced to occupied MOs in pairs is called restricted HF (RHF), and the resulting wave function is of the RHF type. A cal-... [Pg.23]

MOs can be different, and this permits spin polarization. Equations (6.8) and (6.9) define umestricted Hartree-Fock (UHF) theory. [Pg.190]

Models for the electronic structure of polynuclear systems were also developed. Except for metals, where a free electron model of the valence electrons was used, all methods were based on a description of the electronic structure in terms of atomic orbitals. Direct numerical solutions of the Hartree-Fock equations were not feasible and the Thomas-Fermi density model gave ridiculous results. Instead, two different models were introduced. The valence bond formulation (5) followed closely the concepts of chemical bonds between atoms which predated quantum theory (and even the discovery of the electron). In this formulation certain reasonable "configurations" were constructed by drawing bonds between unpaired electrons on different atoms. A mathematical function formed from a sum of products of atomic orbitals was used to represent each configuration. The energy and electronic structure was then... [Pg.27]

This expression excludes self-interaction. There have been a number of attempts to include into the Hartree-Fock equations the main terms of relativistic and correlation effects, however without great success, because the appropriate equations become much more complex. For a large variety of atoms and ions both these effects are fairly small. Therefore, they can be easily accounted for as corrections in the framework of first-order perturbation theory. Having in mind the constantly growing possibilities of computers, the Hartree-Fock self-consistent field method in various... [Pg.337]

More recently, Caves and Karplus71 have used diagrammatic techniques to investigate Hartree-Fock perturbation theory. They developed a double perturbation expansion in the perturbing field and the difference between the true electron repulsion potential and the Hartree-Fock potential, V. This is compared with a solution of the coupled Hartree-Fock equations. In their interesting analysis they show that the CPHF equations include all terms first order in V and some types of terms up to infinite order. They propose an alternative iteration procedure which sums an additional set of diagrams and thus should give results more accurate than the CPHF scheme. Calculations on Ha and Be confirmed these conclusions. [Pg.91]

The description of electron motion and electronic states that is at the heart of all of chemistry is included in wave function theory, which is also referred to as self-consistent-field (SCF) or, by honouring its originators, Hartree-Fock (HF) theory [7]. In principle, this theory also includes density functional theory (DFT) approaches if one uses densities derived from SCF densities, which is common but not a precondition [2] therefore, we treat density functional theory in a separate section. Many approaches based on wave function theory date back to when desktop supercomputers were not available and scientists had to reduce the computational effort by approximating the underlying equations with data from experiment. This approach and its application to the elucidation of reaction mechanisms are outlined in Section 7.2.3. [Pg.173]

For anything but the most trivial systems, it is not possible to solve the electronic Schrodinger equation exactly, and approximate techniques must instead be used. There exist a variety of approximate methods, including Hartree-Fock (HF) theory, single- and multireference correlated ab initio methods, semiempirical methods, and density functional theory. We discuss each of these in turn. In Hartree-Fock theory, the many-electron wavefunction vF(r1, r2,..., r ) is approximated as an antisymmetrized product of one-electron wavefunctions, ifijfi) x Pauli principle. This antisymmetrized product is known as a Slater determinant. [Pg.464]

The theory is usually expressed in terms of canonical Hartree-Fock equations... [Pg.61]

The widespread application of MO theory to systems containing a bonds was sparked in large part by the development of extended Hiickel (EH) theory by Hoffmann (I) in 1963. At that time, 7r MO theory was practiced widely by chemists, but only a few treatments of a bonding had been undertaken. Hoffmann s theory changed this because of its conceptual simplicity and ease of applicability to almost any system. It has been criticized on various theoretical grounds but remains in widespread use today. A second approximate MO theory with which we are concerned was developed by Pople and co-workers (2) in 1965 who simplified the exact Hartree-Fock equations for a molecule. It has a variety of names, such as complete neglect of differential overlap (CNDO) or intermediate neglect of differential overlap (INDO). This theory is also widely used today. [Pg.2]

A symmetry-adapted perturbation theory approach for the calculation of the Hartree-Fock interaction energies has been proposed by Jeziorska et al.105 for the helium dimer, and generalized to the many-electron case in Ref. (106). The authors of Refs. (105-106) developed a basis-set independent perturbation scheme to solve the Hartree-Fock equations for the dimer, and analyzed the Hartree-Fock interaction energy in terms of contributions related to many-electron SAPT reviewed in Section 7. Specifically, they proposed to replace the Hartree-Fock equations for the... [Pg.56]

Note that n — N/2 corresponds to the independent particle model analogous to the celebrated Hartree-Fock equations in atomic and molecular physics. We also observe that the fundamental interaction mentioned above is unitarily connected with the electromagnetic interactions between the particle m0 and the antiparticle —m0. Since we do not make any distinctions between the Klein-Gordon and the Dirac equation, we are not able here to integrate the electro-weak theory although in principle this should be possible. [Pg.125]


See other pages where Hartree-Fock equations/theory is mentioned: [Pg.128]    [Pg.224]    [Pg.213]    [Pg.214]    [Pg.10]    [Pg.41]    [Pg.77]    [Pg.29]    [Pg.396]    [Pg.113]    [Pg.275]    [Pg.274]    [Pg.177]    [Pg.211]    [Pg.24]    [Pg.224]    [Pg.90]    [Pg.199]    [Pg.132]    [Pg.14]    [Pg.445]    [Pg.511]   
See also in sourсe #XX -- [ Pg.51 , Pg.52 , Pg.53 , Pg.54 , Pg.55 , Pg.56 , Pg.57 , Pg.58 , Pg.59 , Pg.60 , Pg.61 , Pg.62 , Pg.63 , Pg.64 , Pg.85 ]

See also in sourсe #XX -- [ Pg.51 , Pg.52 , Pg.53 , Pg.54 , Pg.55 , Pg.56 , Pg.57 , Pg.58 , Pg.59 , Pg.60 , Pg.61 , Pg.62 , Pg.63 , Pg.64 , Pg.85 ]




SEARCH



Fock equations

Hamiltonian equation derivative Hartree-Fock theory

Hartree Fock equation

Hartree equation

Hartree theory

Hartree-Fock equations/theory application

Hartree-Fock equations/theory closed-shell

Hartree-Fock equations/theory configuration interaction

Hartree-Fock equations/theory many-body perturbation

Hartree-Fock theory

ORBITAL INTERACTION THEORY Relationship to Hartree-Fock Equations

© 2024 chempedia.info