Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hamiltonian operator states

Applications of quantum mechanics to chemistry invariably deal with systems (atoms and molecules) that contain more than one particle. Apart from the hydrogen atom, the stationary-state energies caimot be calculated exactly, and compromises must be made in order to estimate them. Perhaps the most useful and widely used approximation in chemistry is the independent-particle approximation, which can take several fomis. Conuiion to all of these is the assumption that the Hamiltonian operator for a system consisting of n particles is approximated by tlie sum... [Pg.24]

We start from the time-dependent Sclirodinger equation for the state fiinction (wave fiinction (t)) of the reactive molecular system with Hamiltonian operator // ... [Pg.772]

The symmetry argument actually goes beyond the above deterniination of the symmetries of Jahn-Teller active modes, the coefficients of the matrix element expansions in different coordinates are also symmetry determined. Consider, for simplicity, an electronic state of symmetiy in an even-electron molecule with a single threefold axis of symmetry, and choose a representation in which two complex electronic components, e ) = 1/v ( ca) i cb)), and two degenerate complex nuclear coordinate combinations Q = re " each have character T under the C3 operation, where x — The bras e have character x. Since the Hamiltonian operator is totally symmetric, the diagonal matrix elements e H e ) are totally symmetric, while the characters of the off-diagonal elements ezf H e ) are x. Since x = 1, it follows that an expansion of the complex Hamiltonian matrix to quadratic terms in Q. takes the form... [Pg.7]

As shown above in Section UFA, the use of wavepacket dynamics to study non-adiabatic systems is a trivial extension of the methods described for adiabatic systems in Section H E. The equations of motion have the same form, but now there is a wavepacket for each electronic state. The motions of these packets are then coupled by the non-adiabatic terms in the Hamiltonian operator matrix elements. In contrast, the methods in Section II that use trajectories in phase space to represent the time evolution of the nuclear wave function cannot be... [Pg.288]

Hamiltonian operator, 2,4 for many-electron systems, 27 for many valence electron molecules, 8 semi-empirical parametrization of, 18-22 for Sn2 reactions, 61-62 for solution reactions, 57, 83-86 for transition states, 92 Hammond, and linear free energy relationships, 95... [Pg.232]

The treatment developed here is based on the density matrix of quantum mechanics and extends previous work using wavefunctions.(42 5) The density matrix approach treats all energetically accessible electronic states in the same fashion, and naturally leads to average effective potentials which have been shown to give accurate results for electronically diabatic collisions. 19) The approach is taken here for systems where the dynamics can be described by a Hamiltonian operator, as it is possible for isolated molecules or in models where environmental effects can be represented by terms in an effective Hamiltonian. [Pg.319]

However, there also exists a third possibility. By using a famous relation due to Dirac, the relativistic effects can be (in a nonunique way) divided into spin-independent and spin-dependent terms. The former are collectively called scalar relativistic effects and the latter are subsumed under the name spin-orbit coupling (SOC). The scalar relativistic effects can be straightforwardly included in the one-electron Hamiltonian operator h. Unless the investigated elements are very heavy, this recovers the major part of the distortion of the orbitals due to relativity. The SOC terms may be treated in a second step by perturbation theory. This is the preferred way of approaching molecular properties and only breaks down in the presence of very heavy elements or near degeneracy of the investigated electronic state. [Pg.148]

The appearance of the Hamiltonian operator in equation (3.55) as stipulated by postulate 5 gives that operator a special status in quantum mechanics. Knowledge of the eigenfunctions and eigenvalues of the Hamiltonian operator for a given system is sufficient to determine the stationary states of the system and the expectation values of any other dynamical variables. [Pg.93]

The variation method gives an approximation to the ground-state energy Eq (the lowest eigenvalue of the Hamiltonian operator H) for a system whose time-independent Schrodinger equation is... [Pg.232]

The paramagnetism of the triplet state can be observed by electron spin resonance spectroscopy. This is perhaps the most reliable means of determining the existence of a triplet state since the ESR signals can be predicted using the following Hamiltonian operator ... [Pg.111]

In this equation, H, the Hamiltonian operator, is defined by H = — (h2/8mir2)V2 + V, where h is Planck s constant (6.6 10 34 Joules), m is the particle s mass, V2 is the sum of the partial second derivative with x,y, and z, and V is the potential energy of the system. As such, the Hamiltonian operator is the sum of the kinetic energy operator and the potential energy operator. (Recall that an operator is a mathematical expression which manipulates the function that follows it in a certain way. For example, the operator d/dx placed before a function differentiates that function with respect to x.) E represents the total energy of the system and is a number, not an operator. It contains all the information within the limits of the Heisenberg uncertainty principle, which states that the exact position and velocity of a microscopic particle cannot be determined simultaneously. Therefore, the information provided by Tint) is in terms of probability I/2 () is the probability of finding the particle between x and x + dx, at time t. [Pg.3]

Because of the interelectronic repulsion term l/ri2, the electronic Hamiltonian is not separable and only approximate solution of the wave equation can be considered. The obvious strategy would be to use Hj wave functions in a variation analysis. Unfortunately, these are not known in functional form and are available only as tables. A successful parameterization, first proposed by James and Coolidge [89] and still the most successful procedure, consists of expressing the Hamiltonian operator in terms of the four elliptical coordinates 1j2 and 771 >2 of the two electrons and the variable p = 2ri2/rab. The elliptical coordinates 4> 1 and 2, as in the case of Hj, do not enter into the ground-state wave function. The starting wave function for the lowest state was therefore taken in the power-series form... [Pg.375]

In the Schrodinger picture operators in the case of a closed system do not depend explicitly on the time, but the state vector is time dependent. However, the expectation values are generally functions of the time. The commutator of the Hamiltonian operator H= —(h/2iri)(d/dt) and another operator A, is defined by... [Pg.454]

H being the effective 1-electron Hamiltonian operator and Ek the energy of the kth state. Inserting (1.1) in (1.2) leads to... [Pg.5]

We can now consider explicitly how configurations interact to produce electronic states. Our first task is to define the Hamiltonian operator. In order to simplify our analysis, we adopt a Hamiltonian which consists of only one electron terms and we set out to develop electronic states which arise from one electron configuration mixing. [Pg.200]

We follow closely previous expositions of the theory (4, 5) and include only the particular features needed for our present discussion. Let us imagine a mixed-valence system composed of two subunits, A and B, which are associated with formal oxidation states M and N, respectively. We designate the corresponding electronic Hamiltonian operators H and H, and if the... [Pg.281]

These are the solutions fj of the time-independent Schrddinger equation Ht , = E/Y , where H is the Hamiltonian operator of the system and , is the energy corresponding to the state y,-. [Pg.13]

So far we have assumed that the electronic structure of the crystal consists of one band derived, in our approximation, from a single atomic state. In general, this will not be a realistic picture. The metals, for example, have a complicated system of overlapping bands derived, in our approximation, from several atomic states. This means that more than one atomic orbital has to be associated with each crystal atom. When this is done, it turns out that even the equations for the one-dimensional crystal cannot be solved directly. However, the mathematical technique developed by Baldock (2) and Koster and Slater (S) can be applied (8) and a formal solution obtained. Even so, the question of the existence of otherwise of surface states in real crystals is diflBcult to answer from theoretical considerations. For the simplest metals, i.e., the alkali metals, for which a one-band model is a fair approximation, the problem is still difficult. The nature of the difficulty can be seen within the framework of our simple model. In the first place, the effective one-electron Hamiltonian operator is really different for each electron. If we overlook this complication and use some sort of mean value for this operator, the operator still contains terms representing the interaction of the considered electron with all other electrons in the crystal. The Coulomb part of this interaction acts in such a way as to reduce the effect of the perturbation introduced by the existence of a free surface. A self-consistent calculation is therefore essential, and the various parameters in our theory would have to be chosen in conformity with the results of such a calculation. [Pg.6]

In conventional quantum mechanics, a wavefunction d ribing the ground or excited states of a many-particle system must be a simultaneous eigenfunction of the set of operators that commute with the Hamiltonian. Thus, for example, for an adequate description of an atom, one must introduce the angular momentum and spin operators L, S, L, and the parity operator H, in addition to the Hamiltonian operator. [Pg.213]

To gain an understanding of this mechanism, consider the Hamiltonian operator (H — Egl) with only two-body interactions, where Eg is the lowest energy for an A -particle system with Hamiltonian H and the identity operator I. Because Eg is the lowest (or ground-state) energy, the Hamiltonian operator is positive semi-definite on the A -electron space that is, the expectation values of H with respect to all A -particle functions are nonnegative. Assume that the Hamiltonian may be expanded as a sum of operators G,G,... [Pg.36]

The principle of microreversibility [154,155] applies to all bound states corresponding to real Hamiltonian operators. Hence the A-electron momentum density before and after time reversal are related by... [Pg.313]


See other pages where Hamiltonian operator states is mentioned: [Pg.14]    [Pg.172]    [Pg.2310]    [Pg.591]    [Pg.26]    [Pg.630]    [Pg.187]    [Pg.307]    [Pg.139]    [Pg.187]    [Pg.93]    [Pg.203]    [Pg.224]    [Pg.46]    [Pg.110]    [Pg.461]    [Pg.699]    [Pg.42]    [Pg.311]    [Pg.287]    [Pg.224]    [Pg.43]    [Pg.44]    [Pg.118]    [Pg.362]    [Pg.111]    [Pg.177]   
See also in sourсe #XX -- [ Pg.260 ]




SEARCH



Hamiltonian operator

Hamiltonian operator solid-state approximation

© 2024 chempedia.info