Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Linear free-energy

Such linear free energy relationships are available for alkyl sulphates and for tire C4 to C9 homologues of tire dialkanoyl lecitliins (see table C2.3.3 for stmcture). Most of tire naturally occurring phospholipids are too insoluble to fonn micelles, but tire lower alkanoyl lecitliins, also known as phosphotidylcholines, do fonn micelles. The ernes for tliese homologues are listed in table C2.3.6. The approximately linear free energy relationship between tire alkyl chain iengtli and log cmc is given by ... [Pg.2582]

The ernes of ionic surfactants are usually depressed by tire addition of inert salts. Electrostatic repulsion between headgroups is screened by tire added electrolyte. This screening effectively makes tire surfactants more hydrophobic and tliis increased hydrophobicity induces micellization at lower concentrations. A linear free energy relationship expressing such a salt effect is given by ... [Pg.2583]

A quantitative treatment of surfactant solubility has been successfully made empirically using linear free energy relationships. An important relation is that for the linear free energy of transfer of alkanes to water [23] ... [Pg.2584]

Let us illustrate this with the example of the bromination of monosubstituted benzene derivatives. Observations on the product distributions and relative reaction rates compared with unsubstituted benzene led chemists to conceive the notion of inductive and resonance effects that made it possible to explain" the experimental observations. On an even more quantitative basis, linear free energy relationships of the form of the Hammett equation allowed the estimation of relative rates. It has to be emphasized that inductive and resonance effects were conceived, not from theoretical calculations, but as constructs to order observations. The explanation" is built on analogy, not on any theoretical method. [Pg.170]

Hammett [7] was the first to develop an approach that was later subsumed under Linear Free Energy Relationships (LFER). He showed that the addity constants of a... [Pg.179]

This shows that Eqs. (1) and 2) are basically relationships between the Gibbs free energies of the reactions under consideration, and explains why such relationships have been termed linear free energy relationships (LEER). [Pg.182]

N.B. Chapman, J. Shorter (Eds.), Advances in Linear Free Energy Relationships, Plenum Press, London, 1972. po] N.B. Chapman, J. Shorter (Eds.), Correlation Analysis in Chemistry, Plenum Press, London, 1978. pi] J. Shorter, Linear Free Energy Relationships (LEER), in Encyclopedia of Computational Chemistry, Vol. 2, P.v.R. Schleyer, N.L. Ailinger, T. Clark,... [Pg.201]

Two approaches to quantify/fQ, i.e., to establish a quantitative relationship between the structural features of a compoimd and its properties, are described in this section quantitative structure-property relationships (QSPR) and linear free energy relationships (LFER) cf. Section 3.4.2.2). The LFER approach is important for historical reasons because it contributed the first attempt to predict the property of a compound from an analysis of its structure. LFERs can be established only for congeneric series of compounds, i.e., sets of compounds that share the same skeleton and only have variations in the substituents attached to this skeleton. As examples of a QSPR approach, currently available methods for the prediction of the octanol/water partition coefficient, log P, and of aqueous solubility, log S, of organic compoimds are described in Section 10.1.4 and Section 10.15, respectively. [Pg.488]

N. B. Chapman. J. Shorter, Advances in Linear Free Energy Relationships, Plenum Press, London, 1972. [Pg.513]

Solvents exert their influence on organic reactions through a complicated mixture of all possible types of noncovalent interactions. Chemists have tried to unravel this entanglement and, ideally, want to assess the relative importance of all interactions separately. In a typical approach, a property of a reaction (e.g. its rate or selectivity) is measured in a laige number of different solvents. All these solvents have unique characteristics, quantified by their physical properties (i.e. refractive index, dielectric constant) or empirical parameters (e.g. ET(30)-value, AN). Linear correlations between a reaction property and one or more of these solvent properties (Linear Free Energy Relationships - LFER) reveal which noncovalent interactions are of major importance. The major drawback of this approach lies in the fact that the solvent parameters are often not independent. Alternatively, theoretical models and computer simulations can provide valuable information. Both methods have been applied successfully in studies of the solvent effects on Diels-Alder reactions. [Pg.8]

The applicability of the two-parameter equation and the constants devised by Brown to electrophilic aromatic substitutions was tested by plotting values of the partial rate factors for a reaction against the appropriate substituent constants. It was maintained that such comparisons yielded satisfactory linear correlations for the results of many electrophilic substitutions, the slopes of the correlations giving the values of the reaction constants. If the existence of linear free energy relationships in electrophilic aromatic substitutions were not in dispute, the above procedure would suffice, and the precision of the correlation would measure the usefulness of the p+cr+ equation. However, a point at issue was whether the effect of a substituent could be represented by a constant, or whether its nature depended on the specific reaction. To investigate the effect of a particular substituent in different reactions, the values for the various reactions of the logarithms of the partial rate factors for the substituent were plotted against the p+ values of the reactions. This procedure should show more readily whether the effect of a substituent depends on the reaction, in which case deviations from a hnear relationship would occur. It was concluded that any variation in substituent effects was random, and not a function of electron demand by the electrophile. ... [Pg.139]

Brown developed the selectivity relationship before the introduction of aromatic reactivities following the Hammett model. The former, less direct approach to linear free-energy relationships was necessary because of lack of data at the time. [Pg.140]

The development of linear free energy correlations of the rate of aromatic substitutions has been discussed ( 7.3). We record here the results of such correlations for nitration. [Pg.194]

Linear Free Energy—Linear Solvation Energy Relationships. Linear free energy (LFER) and linear solvation energy (LSER) relationships are used to develop correlations between selected properties of similar compounds. These are fundamentally a collection of techniques whereby properties can be predicted from other properties for which linear dependency has been observed. Linear relationships include not only simple y = rax + b relationships, but also more compHcated expressions such as the Hammett equation (254) which correlates equiUbrium constants for ben2enes,... [Pg.254]

Substituent Effects and Linear Free-Energy Relationships... [Pg.204]

SECTION 4.3. SUBSTITUENT EFFECTS AND LINEAR FREE-ENERGY RELATIONSHIPS... [Pg.205]

Since AG and AG are combinations of enthalpy and entropy terms, a linear free-energy relationship between two reaction series can result from one of three circumstances (1) AH is constant and the AS terms are proportional for the series, (2) AS is constant and the AH terms are proportional, or (3) AH and AS are linearly related. Dissection of the free-energy changes into enthalpy and entropy components has often shown the third case to be true. °... [Pg.206]


See other pages where Linear free-energy is mentioned: [Pg.2582]    [Pg.179]    [Pg.489]    [Pg.712]    [Pg.138]    [Pg.240]    [Pg.242]    [Pg.242]    [Pg.5]    [Pg.91]    [Pg.147]    [Pg.147]    [Pg.997]    [Pg.998]    [Pg.168]    [Pg.475]    [Pg.393]    [Pg.287]    [Pg.109]    [Pg.358]    [Pg.205]    [Pg.209]    [Pg.212]   
See also in sourсe #XX -- [ Pg.10 , Pg.205 ]

See also in sourсe #XX -- [ Pg.10 , Pg.205 ]

See also in sourсe #XX -- [ Pg.10 , Pg.205 ]

See also in sourсe #XX -- [ Pg.123 , Pg.188 , Pg.285 ]




SEARCH



© 2024 chempedia.info