Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Synthesis 2 Haloalkanes

Esters from Alcohols and Haloalkane Synthesis CHAPTER 9... [Pg.337]

This method of haloalkane synthesis is especially efQcient because HOPBr2 continues to react successively with two more molecules of alcohol, converting them into haloalkane as well. [Pg.337]

The catalyst is phosphoric acid. The laboratory synthesis of alcohols is by nucleophilic substitution of haloalkanes. [Pg.875]

The formation of C-O, C-S, C-N and C-C bonds by nucleophilic substitution is described in subsequent chapters. In this section the synthesis of haloalkanes by halogen-halogen exchange and related reactions are presented. [Pg.23]

Although sodium sulphide reacts readily with haloalkanes [2] and activated aryl halides (see Chapter 2) [e.g. 3-5] in the presence of a quaternary ammonium catalyst to form symmetrical thioethers (Table 4.1), a major side reaction results in the formation of disulphides owing to the oxidation of the intermediate thiols under the basic conditions. Consequently, little use has been made of this procedure for the synthesis of thioethers [3, 6], but the corresponding reaction of the a,(0-dihaloalkanes to yield cyclic thioethers has proved to be a valuable procedure for the synthesis of thietanes [7] (Table 4.2). The ring closure with the secondary dihaloalkanes is considerably more difficult to effect than is the reaction of the primary dihaloalkanes. 1,3-Dihydrobenzo[c]thiophene (89%) is produced in the reaction of 1,2-bis(bromomethyl)benzene with sodium sulphide (Scheme 4.1) [8]. The direct... [Pg.119]

As indicated above, the traditional base-catalysed hydrolysis of 0,5-dialkyl thio-carbonates for the synthesis of thiols is generally unsatisfactory, as oxidation leads to the formation of disulphides. Under phase-transfer conditions, the procedure produces thioethers to the virtual exclusion of the thiols, as a result of the slow release of the thiolate anions in the presence of the electrophilic ester. However, a simple modification of the reaction conditions provides an efficient one-pot reaction [50] from haloalkanes (Table 4.15) via the intermediate formation of the thermally labile (9-/ert-butyl-5-alkyl dithiocarbonates (Scheme 4.8). [Pg.135]

Selected examples of the synthesis of S-alkyl thiocarbamates Amine Haloalkane % yield... [Pg.148]

Using a soliddiquid two-phase system of the sodium arenesulphinite in 1,2-dimethoxyethane, or in the complete absence of a solvent, permits the use of less reactive haloalkanes [3,4], This is a particularly good method for the preparation of sulphones where the sulphinic acid salts are readily available and, in addition to the synthesis of the tolyl sulphones listed in Table 4.28, it has been used to prepare phenyl sulphones [3]. Phenyl sulphones have also been prepared in good yield using a polymer supported catalyst [5] (Table 4.29). As the system is not poisoned by iodide ions, reactive iodoalkanes can be used and there is the additional advantages in the ease of isolation of the product and the re-use of the catalyst. [Pg.152]

Regiospecific mono-C-alkylation (60-90%) of trimethylsilyl enol ethers is promoted by benzyltriethylammonium fluoride [34, 35]. A similar alkylation of tin(IV) enolates is aided by stoichiometric amount of tetra-n-butylammonium bromide and has been utilized in the synthesis of y-iminoketones [36]. Carbanions from weakly acidic carbon acids can be generated by the reaction of their trimethylsilyl derivatives with tetra-n-butylammonium triphenyldifluorosilicate [37] (see also Section 6.3). Such carbanions react readily with haloalkanes. Tautomeric ketones in which the enol form has a high degree of stabilization are O-alkylated to form the enol ether, e.g. methylation of anthrone produces 9-methoxyanthracene [26],... [Pg.238]

Methylenesulphones are more acidic than the simple esters, ketones and cyano compounds and are more reactive with haloalkanes [e.g. 48-57] to yield precursors for the synthesis of aldehydes [53], ketones [53], esters [54] and 1,4-diketones [55] (Scheme 6.4). The early extractive alkylation methods have been superseded by solidtliquid phase-transfer catalytic methods [e.g. 58] and, combined with microwave irradiation, the reaction times are reduced dramatically [59]. The reactions appear to be somewhat sensitive to steric hindrance, as the methylenesulphones tend to be unreactive towards secondary haloalkanes and it has been reported that iodomethylsulphones cannot be dialkylated [49], although mono- and di-chloromethylsulphones are alkylated with no difficulty [48, 60] and methylenesulphones react with dihaloalkanes to yield cycloalkyl sulphones (Table 6.5 and 6.6). When the ratio of dihaloalkane to methylene sulphone is greater than 0.5 1, open chain systems are produced [48, 49]. Vinyl sulphones are obtained from the base-catalysed elimination of the halogen acid from the products of the alkylation of halomethylenesulphones [48]. [Pg.240]

Haloalkanes are readily oxidized to the corresponding aldehydes or ketones. The best yields are attained with secondary alcohols and unsaturated hydroxyl groups [5]. a-Nitroketones, which are valuable intermediates in organic synthesis, are... [Pg.426]

One of the first series of reports on ultrasonically-enhanced electrosynthesis was by Gautheron, Tainturier and Degrand [69] who used the technique to explore routes to organoselenium and tellurium derivatives. Instead of employing a sacrificial cathode of elemental selenium, their procedure allowed the direct use of selenium powder with carbon cloth as cathode to produce Se and Se. A further benefit was that this method also allowed production of the corresponding tellurium anions. These species could be employed in situ in aprotic solvents such as DMF, THF and MeCN for the synthesis of selenides and tellurides by nucleophilic displacement from haloalkanes. [Pg.257]

Organic chemistry and instrumental analysis Synthesis 2 Haloalkanes... [Pg.58]

The reactivity order also appears to correlate with the C-X bond energy, inasmuch as the tertiary alkyl halides both are more reactive and have weaker carbon-halogen bonds than either primary or secondary halides (see Table 4-6). In fact, elimination of HX from haloalkenes or haloarenes with relatively strong C-X bonds, such as chloroethene or chlorobenzene, is much less facile than for haloalkanes. Nonetheless, elimination does occur under the right conditions and constitutes one of the most useful general methods for the synthesis of alkynes. For example,... [Pg.243]

Scheme 6.12 Proposed mechanism for the synthesis of cyclic carbamates from amino alcohols and C02, using P(lll) reagents and haloalkanes. Scheme 6.12 Proposed mechanism for the synthesis of cyclic carbamates from amino alcohols and C02, using P(lll) reagents and haloalkanes.
As has already been pointed out, the Finkelstein reaction can be conducted in situ in the absence of solvents. For example, alkylations of purine and pyrimidine bases with alkyl halides and dimethyl sulfate have been carried out by solid/liquid phase-transfer catalysis in the absence of any additional solvent [48], as have cyanation of haloalkanes [49] and / -eliminations [50]. Noteworthy is the synthesis of glycosyl isothiocyanates by the reaction of potassium thiocyanate with molten glycosyl bromide at 190 °C [51]. [Pg.91]

Another application of the direct alkylation of metal-14 anions is the synthesis of polymer-supported organotin hydrides. These were prepared by the reaction of stannyl group was separated from the phenyl ring of polystyrene by two, three or even four carbon spacers. These polymers were found to contain 0.8-1.4 mmol of Sn-H per gram. The reducing ability of the polymer-supported organotin hydrides was monitored by reactions with haloalkanes (Scheme 22)142. [Pg.698]

The synthesis ofhaloaluminate-based ionic liquids from halide salts and aluminum Lewis acids (most commonly AIX3 X=C1, Br) can generally be split into two steps (i) fomation of the desired cation by the reaction of a trialkylamine, trialkylphosphine or dialkylsulfide with a haloalkane, and (ii) formation of the haloaluminate anion by addition of an appropriate aluminum halide to this salt (Scheme 2.1). [Pg.16]

All reagents used for the synthesis of cations should be purified according to literature procedures before use [19]. Amines such as 1-alkylimidazoles or pyridines are typically distilled from sodium hydroxide or calcium hydride if dry amines are required and stored under dry nitrogen or argon at 0°C. Haloalkanes are washed with sulfuric acid until no further color is extracted into the acid layer and then neutralized with NaHCC>3 and deionized water prior to distillation from CaC j. All solvents used in the syntheses should be dried and distilled prior to use. In order to obtain colorless halide salts it is recommended to perform all reactions under a protective atmosphere of a dry inert gas in order to exclude moisture and oxygen from the reaction. [Pg.17]


See other pages where Synthesis 2 Haloalkanes is mentioned: [Pg.92]    [Pg.336]    [Pg.92]    [Pg.336]    [Pg.436]    [Pg.20]    [Pg.234]    [Pg.385]    [Pg.145]    [Pg.57]    [Pg.106]    [Pg.12]    [Pg.145]    [Pg.694]    [Pg.119]    [Pg.182]    [Pg.496]    [Pg.168]    [Pg.37]    [Pg.769]   
See also in sourсe #XX -- [ Pg.336 , Pg.337 , Pg.338 ]




SEARCH



Esters from Alcohols and Haloalkane Synthesis

SYNTHESIS OF ALCOHOLS FROM HALOALKANES

© 2024 chempedia.info