Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Halide titration

Figure 7-7 Titration curves showing the effect of Ksp. Each curve is calculated for 25.00 mL of 0.100 0 M halide titrated with 0.050 00 M Ag+. Equivalence points are marked by arrows. [Pg.130]

When the halide titrations are performed without additives, the transitions between the various curve segments are often much less sharp than described here. This is a consequence of co-precipitation of AgBr in Agl, and of AgCl in AgBr, because these salts can form solid solutions and/or mixed crystals. Such co-precipitation canbe suppressed by the presence of a... [Pg.198]

For titration of halides the solution is best buffered to about pH 5. The indicator electrode is a piece of silver wire of about 1 mm in diameter and about 3 cm long which has been curled into an open spiral the reference electrode may be a mercury-mercurous sulphate half-cell with a potassium sulphate bridge. An alternative reference electrode for use in titration of halides, and one which works well in practice and is convenient to use, is the glass electrode if a glass electrode is used in this way, however, the potentiometer must have a high-impedance, shielded input socket. The following practical details are suitable for halide titrations ... [Pg.865]

Silver-halide titrations, (a) Chloride alone (solid line) (b) iodide plus chloride (dashed... [Pg.92]

Ethereal methyl1ithiurn (as the lithium bromide complex) was obtained by the submitters from Aldrich Chemical Company Inc. The checkers used 1.19 M methyl1ithiurn-lithium bromide complex in ether supplied by Alfa Products, Morton/Thiokol, Inc. The concentration of the methyllithium was determined by titration with 1.0 M tert-butyl alcohol in benzene using 1,10-phenanthroline as indicator. The submitters report that ethereal methyllithium of low halide content purchased from Alfa Products, Morton/Thiokol, Inc., gave similar results. [Pg.19]

Theory. The anion exchange resin, originally in the chloride form, is converted into the nitrate form by washing with sodium nitrate solution. A concentrated solution of the chloride and bromide mixture is introduced at the top of the column. The halide ions exchange rapidly with the nitrate ions in the resin, forming a band at the top of the column. Chloride ion is more rapidly eluted from this band than bromide ion by sodium nitrate solution, so that a separation is possible. The progress of elution of the halides is followed by titrating fractions of the effluents with standard silver nitrate solution. [Pg.209]

Plot a graph of the total effluent collected against the concentration of halide in each fraction (millimoles per litre). The sum of the titres using 0.3 M sodium nitrate eluant (less blank for each titration) corresponds to the chloride, and the parallel figure with 0.6M sodium nitrate corresponds to the bromide recovery. [Pg.209]

The method may also be applied to the analysis of silver halides by dissolution in excess of cyanide solution and back-titration with standard silver nitrate. It can also be utilised indirectly for the determination of several metals, notably nickel, cobalt, and zinc, which form stable stoichiometric complexes with cyanide ion. Thus if a Ni(II) salt in ammoniacal solution is heated with excess of cyanide ion, the [Ni(CN)4]2 ion is formed quantitatively since it is more stable than the [Ag(CN)2] ion, the excess of cyanide may be determined by the Liebig-Deniges method. The metal ion determinations are, however, more conveniently made by titration with EDTA see the following sections. [Pg.310]

These reactions take place with sparingly soluble silver salts, and hence provide a method for the determination of the halide ions Cl", Br, I-, and the thiocyanate ion SCN ". The anion is first precipitated as the silver salt, the latter dissolved in a solution of [Ni(CN)4]2", and the equivalent amount of nickel thereby set free is determined by rapid titration with EDTA using an appropriate indicator (murexide, bromopyrogallol red). [Pg.312]

Silver halides can be dissolved in a solution of potassium tetracyanonickelate(II) in the presence of an ammonia-ammonium chloride buffer, and the nickel ion set free may be titrated with standard EDTA using murexide as indicator. [Pg.327]

A disadvantage of adsorption indicators is that silver halides are sensitised to the action of light by a layer of adsorbed dyestuff. For this reason, titrations should be carried out with a minimum exposure to sunlight. When using adsorption indicators, only 2 x 10-4 to 3 x 10 3 mol of dye per mol of silver halide is added this small concentration is used so that an appreciable fraction of the added indicator is actually adsorbed on the precipitate. [Pg.347]

Other dyestuffs have been recommended as adsorption indicators for the titration of halides and other ions. Thus cyanide ion may be titrated with standard silver nitrate solution using diphenylcarbazide as adsorption indicator (see Section 10.44) the precipitate is pale violet at the end point. A selection of adsorption indicators, their properties and uses, is given in Table 10.8. [Pg.347]

Iodides can also be determined by this method, and in this case too there is no need to filter off the silver halide, since silver iodide is very much less soluble than silver thiocyanate. In this determination the iodide solution must be very dilute in order to reduce adsorption effects. The dilute iodide solution (ca 300 mL), acidified with dilute nitric acid, is treated very slowly and with vigorous stirring or shaking with standard 0.1 M silver nitrate until the yellow precipitate coagulates and the supernatant liquid appears colourless. Silver nitrate is then present in excess. One millilitre of iron(III) indicator solution is added, and the residual silver nitrate is titrated with standard 0.1M ammonium or potassium thiocyanate. [Pg.356]

Discussion. Potassium may be precipitated with excess of sodium tetraphenyl-borate solution as potassium tetraphenylborate. The excess of reagent is determined by titration with mercury(II) nitrate solution. The indicator consists of a mixture of iron(III) nitrate and dilute sodium thiocyanate solution. The end-point is revealed by the decolorisation of the iron(III)-thiocyanate complex due to the formation of the colourless mercury(II) thiocyanate. The reaction between mercury( II) nitrate and sodium tetraphenylborate under the experimental conditions used is not quite stoichiometric hence it is necessary to determine the volume in mL of Hg(N03)2 solution equivalent to 1 mL of a NaB(C6H5)4 solution. Halides must be absent. [Pg.359]

The indicator electrode employed in a potentiometric titration will, of course, be dependent upon the type of reaction which is under investigation. Thus, for an acid-base titration, the indicator electrode is usually a glass electrode (Section 15.6) for a precipitation titration (halide with silver nitrate, or silver with chloride) a silver electrode will be used, and for a redox titration [e.g. iron(II) with dichromate] a plain platinum wire is used as the redox electrode. [Pg.554]

An interesting extension of the above experiment is the titration of a mixture of halides (chloride/iodide) with silver nitrate solution. Prepare a solution (100 mL) containing both potassium chloride and potassium iodide weigh each substance accurately and arrange for the solution to be about 0.025 M with respect to each salt. A silver nitrate solution of known concentration (about 0.05 M) will also be required. [Pg.583]

C, which leads to a break in the pressure-composition curve at BF3 Ir = 2 1. The formation of the 1 1 complex in solution is indicated by titrations. Insertion of InCl into the Fe—Fe bond in boiling dioxane yields [T7 -C CO)2Fe]2lnCl in 55% yield. The only group-VIIA compound that forms an addition compound with a group-lIIB halide, namely with BF3, is [(i7 -Cp)2ReH]The formation of (t -Cp),ReH BF3 is established when (T7 -Cp),ReH is titrated tensimetrically in toluene with BF3 at 0°C. [Pg.56]

We have explored rare earth oxide-modified amorphous silica-aluminas as "permanent" intermediate strength acids used as supports for bifunctional catalysts. The addition of well dispersed weakly basic rare earth oxides "titrates" the stronger acid sites of amorphous silica-alumina and lowers the acid strength to the level shown by halided aluminas. Physical and chemical probes, as well as model olefin and paraffin isomerization reactions show that acid strength can be adjusted close to that of chlorided and fluorided aluminas. Metal activity is inhibited relative to halided alumina catalysts, which limits the direct metal-catalyzed dehydrocyclization reactions during paraffin reforming but does not interfere with hydroisomerization reactions. [Pg.563]

Applications Basic methods for the determination of halogens in polymers are fusion with sodium carbonate (followed by determination of the sodium halide), oxygen flask combustion and XRF. Crompton [21] has reported fusion with sodium bicarbonate for the determination of traces of chlorine in PE (down to 5 ppm), fusion with sodium bisulfate for the analysis of titanium, iron and aluminium in low-pressure polyolefins (at 1 ppm level), and fusion with sodium peroxide for the complexometric determination using EDTA of traces of bromine in PS (down to 100ppm). Determination of halogens in plastics by ICP-MS can be achieved using a carbonate fusion procedure, but this will result in poor recoveries for a number of elements [88]. A sodium peroxide fusion-titration procedure is capable of determining total sulfur in polymers in amounts down to 500 ppm with an accuracy of 5% [89]. [Pg.605]

EXPERIMENTAL PROCEDURES AUTOMATED TURBIDIMETRIC TITRATION. A method for the automated aqueous turbidimetric titration of surfactants has been published (10) in which anionic surfactants are titrated against N-cetylpyridinium chloride to form a colloidal precipitate near the equivalence point. N-cetylpyridinium halides have a disadvantage in that they have the tendency to crystallise out of solution (15), consequently the strength of the solution may alter slightly without the knowledge of the operator, also the crystals suspended in solution may cause damage to the autotitrator. In view of these drawbacks hyamine was preferred as the titrant. [Pg.264]

Jagner [28] has also described a semi-automatic titration for high-precision determination of chlorine in seawater, where it has been used for the potentiometric determination of total halides (silver electrode) and alkalinity (glass electrode), and for the photometric titration of total alkaline-earth metals. Several titrations can be effected simultaneously. [Pg.66]


See other pages where Halide titration is mentioned: [Pg.245]    [Pg.245]    [Pg.241]    [Pg.200]    [Pg.392]    [Pg.929]    [Pg.184]    [Pg.137]    [Pg.245]    [Pg.245]    [Pg.241]    [Pg.200]    [Pg.392]    [Pg.929]    [Pg.184]    [Pg.137]    [Pg.64]    [Pg.350]    [Pg.103]    [Pg.38]    [Pg.1091]    [Pg.25]    [Pg.347]    [Pg.352]    [Pg.352]    [Pg.542]    [Pg.579]    [Pg.583]    [Pg.586]    [Pg.865]    [Pg.562]    [Pg.563]    [Pg.567]    [Pg.105]    [Pg.301]   
See also in sourсe #XX -- [ Pg.353 ]




SEARCH



© 2024 chempedia.info