Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Halide metal cations

Table A2.3.2 Halide-water, alkali metal cation-water and water-water potential parameters (SPC/E model). In the SPC/E model for water, the charges on H are at 1.000 A from the Lennard-Jones centre at O. The negative charge is at the O site and the HOH angle is 109.47°. Table A2.3.2 Halide-water, alkali metal cation-water and water-water potential parameters (SPC/E model). In the SPC/E model for water, the charges on H are at 1.000 A from the Lennard-Jones centre at O. The negative charge is at the O site and the HOH angle is 109.47°.
Both the acid and its salts are powerful reducing agents. They reduce, for example, halogens to halides, and heavy metal cations to the metal. Copper(H) ion is reduced further to give copper(I) hydride, a red-brown precipitate ... [Pg.245]

Table 8 1 illustrates an application of each of these to a functional group transfer matron The anionic portion of the salt substitutes for the halogen of an alkyl halide The metal cation portion becomes a lithium sodium or potassium halide... [Pg.327]

Of course, the chemistry of zirconium cluster phases has been well described and reviewed in the literature [1-4]. Apart from a very few examples, mostly in the binary halides, almost all reduced zirconium halides contain octahedra of zirconium atoms centred on an interstitial atom Z. Several possible and experimentally realized Z include H, Be-N, K, Al-P, and the transition metals Mn-Ni. All these compounds have the general formula Ax"[(Zr6Z)Xi2X[J], with a " = alkali or alkaline earth metal cation, X=C1 Br or I, X =inner edge-bridging halide [5], X =outer exo-bonded halide, and 0[Pg.61]

Halogens, the elements in Group 17 of the periodic table, have the largest electron affinities of all the elements, so halogen atoms (a n readily accept electrons to produce halide anions (a a. This allows halogens to react with many metals to form binary compounds, called halides, which contain metal cations and halide anions. Examples include NaCl (chloride anion), Cap2 (fluoride anion), AgBr (bromide anion), and KI (iodide anion). [Pg.551]

A species that bonds to a metal cation to form a complex is known as a ligand. Any species that has a lone pair of electrons has the potential to be a ligand, but in this section, we confine our description to a few of the most common ligands ammonia, compounds derived from ammonia, cyanide, and halides. We describe additional examples in Chapter 20 which addresses the chemistry of the transition metals. [Pg.1323]

Although naturally occurring compounds of transition metals are restricted in scope, a wide variety of compounds can be synthesized in the laboratory. Representative compounds appear in Table 20-2. These compounds fall into three general categories There are many binary halides and oxides in a range of oxidation numbers. Ionic compounds containing transition metal cations and polyatomic oxoanions also are common these include nitrates, carbonates, sulfates, phosphates, and perchlorates. Finally, there are numerous ionic compounds in which the transition metal is part of an oxoanion. [Pg.1433]

While ASV is used to measure metal cations, cathodic stripping voltammetry (CSV) can be used to measure some anions. Mercury is known to dissolve as mercurous ion (Hgl+) at a potential more positive than 220 mV vs. SSC. The Hg + forms insoluble salts with many anions such as halides, S2-, CN , SCN-, SH, etc. [Pg.687]

We have recently shown that metal-exchanged zeolites give rise to carbocationic reactions, through the interactions with alkylhalides (metal cation acts as Lewis acid sites, coordinating with the alkylhalide to form a metal-halide species and an alkyl-aluminumsilyl oxonium ion bonded to the zeolite structure, which acts as an adsorbed carbocation (scheme 2). We were able to show that they can catalyze Friedel-Crafts reactions (9) and isobutane/2-butene alkylation (70), with a superior performance than a protic zeolite catalyst. [Pg.268]

For anions, it is tempting to try and attribute a preferential coordination geometry analogous to that so well established for various metal cations. In many cases simple anions such as the halides exist in approximately tetrahedral or octahedral environments, but it is clear from the diversity of examples reviewed herein that anion coordination geometry is highly flexible and may be adjusted to fit the properties of the various host systems. [Pg.326]

Compounds with a low HOMO and LUMO (Figure 5.5b) tend to be stable to selfreaction but are chemically reactive as Lewis acids and electrophiles. The lower the LUMO, the more reactive. Carbocations, with LUMO near a, are the most powerful acids and electrophiles, followed by boranes and some metal cations. Where the LUMO is the a of an H—X bond, the compound will be a Lowry-Bronsted acid (proton donor). A Lowry-Bronsted acid is a special case of a Lewis acid. Where the LUMO is the cr of a C—X bond, the compound will tend to be subject to nucleophilic substitution. Alkyl halides and other carbon compounds with good leaving groups are examples of this group. Where the LUMO is the n of a C=X bond, the compound will tend to be subject to nucleophilic addition. Carbonyls, imines, and nitriles exemplify this group. [Pg.97]

Uniformly, within this group of cations, perchlorate ion accompanying the transition-element cation is replaced by nitrate (7,31), thiocyanate (7,52), or halide (7,6). Nitrate is probably replaced by thiocyanate, but a secondary change takes place in many systems, which makes direct comparison difficult (see below). If one then makes the further reasonable assumption that solvent interference can be used as an inverse measure of tendency to bind to the central metal cations, thiocyanate, whose competition with alcohol is less efficient (52) than that of chloride (6), should be somewhat replaceable with chloride. Comparisons between chloride and thiocyanate in acetonitrile show also that the formation of a complex with a given anion/cation ratio takes place much more readily with chloride than with thiocyanate (55, 34). By the same criterion, from experiments in alcoholic solution (55), bromide should replace chloride, and an extrapolation of the behavior to iodide seems reasonable. [Pg.76]


See other pages where Halide metal cations is mentioned: [Pg.127]    [Pg.346]    [Pg.109]    [Pg.381]    [Pg.181]    [Pg.575]    [Pg.527]    [Pg.528]    [Pg.63]    [Pg.76]    [Pg.575]    [Pg.18]    [Pg.33]    [Pg.26]    [Pg.138]    [Pg.316]    [Pg.208]    [Pg.22]    [Pg.391]    [Pg.127]    [Pg.346]    [Pg.66]    [Pg.211]    [Pg.459]    [Pg.71]    [Pg.345]    [Pg.961]    [Pg.702]    [Pg.109]    [Pg.73]    [Pg.57]    [Pg.55]    [Pg.500]    [Pg.5]    [Pg.292]    [Pg.78]   
See also in sourсe #XX -- [ Pg.332 ]




SEARCH



Alkyl halides with metal cations

Allyl halides with metal cations

Aryl halides reactions with metal cations

Metals, cationic

© 2024 chempedia.info