Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Glass hydrolysis

Prepared generally by ester interchange from polyvinylacelate (ethanoate) using methanol and base also formed by hydrolysis of the acetate by NaOH and water. The properties of the poly(vinyl alcohol) depend upon the structure of the original polyvinyl acetate. Forms copolymers. Used as a size in the textile industry, in aqueous adhesives, in the production of polyvinyl acetates (e.g. butynal) for safety glasses. U.S. production 1980... [Pg.323]

Ketonic hydrolysis to di-iso-propyl ketone. Mix 15 g. of the ester with 30 ml. of glacial acetic acid, 10 ml. of water and 10 ml. of concentrated sulphuric acid, and reflux in a flask coimected by a ground glass joint... [Pg.480]

Rhenium hexafluoride [10049-17-9J, ReF, is a pale yeUow soHd at 0°C, but a Hquid at ambient temperature. In the presence of moisture it hydroly2es rapidly forming HF, Re02, and HRe04 (see Rheniumand rhenium compounds). It is not safe to store ReF in a glass trap or glass-lined container. Leaks in the system can initiate hydrolysis and produce HF. The pressure buildup causes the system to burst and an explosion may result. [Pg.233]

A solution of sodium cyanide [143-33-9] (ca 25%) in water is heated to 65—70°C in a stainless steel reaction vessel. An aqueous solution of sodium chloroacetate [3926-62-3] is then added slowly with stirring. The temperature must not exceed 90°C. Stirring is maintained at this temperature for one hour. Particular care must be taken to ensure that the hydrogen cyanide, which is formed continuously in small amounts, is trapped and neutrali2ed. The solution of sodium cyanoacetate [1071 -36-9] is concentrated by evaporation under vacuum and then transferred to a glass-lined reaction vessel for hydrolysis of the cyano group and esterification. The alcohol and mineral acid (weight ratio 1 2 to 1 3) are introduced in such a manner that the temperature does not rise above 60—80°C. For each mole of ester, ca 1.2 moles of alcohol are added. [Pg.467]

The production of vitreous siUca from chemical precursors was first described in patents filed in 1934, including a fabrication method in which fine, high purity powders were produced by decomposing silanes (39). Forms were then cast from aqueous sHps. More importantiy, a dame hydrolysis process which used SiCl as the chemical precursor was described (40). This latter approach led to a marked improvement in glass purity and served as the basis for the processes used in the 1990s to make synthetic vitreous siUca. [Pg.499]

Cristobahte can also form on vitreous siUca at temperatures as low as 400°C when the pressure is equal to 35 MPa (<350 atm) and the glass is immersed in weak NaOH solutions (108). In stronger NaOH solutions, quart2 is formed. The formation of the crystalline phases is a result of the hydrolysis of the anions present. No crystallisation occurs with HF, H2SO4, and H PO in KHSO solutions or in pure water. [Pg.503]

W ter ndAlcohols. Silanes do not react with pure water or slightly acidified water under normal conditions. A rapid reaction occurs, however, in basic solution with quantitative evolution of hydrogen (3). Alkali leached from glass is sufficient to lead to the hydrolysis of silanes. [Pg.22]

In the second procedure, calcium nitrate was replaced by calcium alkoxide (60). Calcium and sificon alkoxides have very different rates of hydrolysis. To avoid the production of inhomogeneities, a slow and controlled hydrolysis of a mixture of sificon, calcium, and phosphorous alkoxide was performed. The resulting materials were highly homogenous, and monolithic pieces could be produced. The bioactivity of the gel-derived materials is equivalent or greater than melt-derived glasses. [Pg.260]

The usual containers for shipping are glass for small quantities, and steel cans, dmms, or tank cars for bulk items. Over a period of time, moisture passes through the walls of some plastic containers. If this occurs, the more hydrolytically unstable borate esters may hydroly2e. Thus caution should be used when storing borate esters in plastic. In addition, shipping in metal cans or dmms is not acceptable where hydrolysis can lead to a corrosive product, such as a halogenated alcohol. [Pg.216]


See other pages where Glass hydrolysis is mentioned: [Pg.388]    [Pg.388]    [Pg.414]    [Pg.419]    [Pg.32]    [Pg.65]    [Pg.160]    [Pg.388]    [Pg.388]    [Pg.414]    [Pg.419]    [Pg.32]    [Pg.65]    [Pg.160]    [Pg.99]    [Pg.134]    [Pg.451]    [Pg.392]    [Pg.488]    [Pg.774]    [Pg.253]    [Pg.258]    [Pg.258]    [Pg.194]    [Pg.225]    [Pg.288]    [Pg.328]    [Pg.329]    [Pg.394]    [Pg.75]    [Pg.279]    [Pg.280]    [Pg.463]    [Pg.467]    [Pg.28]    [Pg.476]    [Pg.497]    [Pg.499]    [Pg.38]    [Pg.54]    [Pg.58]    [Pg.248]    [Pg.251]    [Pg.260]    [Pg.260]    [Pg.260]    [Pg.529]    [Pg.150]   


SEARCH



Glasses leaching, hydrolysis

Hydrolysis glass silane

© 2024 chempedia.info