Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Glass diameter, effect

We have already discussed confinement effects in the channel flow of colloidal glasses. Such effects are also seen in hard-sphere colloidal crystals sheared between parallel plates. Cohen et al. [103] found that when the plate separation was smaller than 11 particle diameters, commensurability effects became dominant, with the emergence of new crystalline orderings. In particular, the colloids organise into z-buckled" layers which show up in xy slices as one, two or three particle strips separated by fluid bands see Fig. 15. By comparing osmotic pressure and viscous stresses in the different particle configurations, tlie cross-over from buckled to non-buckled states could be accurately predicted. [Pg.198]

In Table 1, mechanical and physical parameters of different materials used for the production of high-pressure capillaries are listed. Quartz and sapphire display a much higher tensile strength than borosilicate glass. The effective tensile strength given in Table 1 includes the possible existence of faults in the material, which substantially reduces the maximum pressure the capillaries can resist, their number is also much dependent on the details of fabrication process. As the probability for faults decreases with size of the piece of material, small capillaries can endure much higher forces. Selected quartz capillaries with an outer diameter of 3 mm and an inner diameter of 1 mm were reported to sustain pressures up to 400 MPa. Yamada even reported that quartz capillaries made out of synthetic quartz can withstand pressures up to 600 MPa. ... [Pg.181]

In order to determine the effect of the properties of the material used for the intermediate plate (particularly the dielectric constant e) on the degree of cleanup Kjsf f of the dust-covered surface, experiments were performed with plates made of clear plastic and aluminosilicate glass (diameter of glass particles used for adhesion 40-60 jum, Vq = 20 kV, H = 1 cm, E = 20 kV/cm) ... [Pg.222]

Filament diameter is a significant variable affecting the flexural strength of polypropylene. The glass content effect is significant but reaches an optimum level at 23% loading. In Fig. 2-27, the flexural strength increases with a decrease in filament diameter. [Pg.44]

Samples and calibration standards are prepared for analysis using a 10-mL syringe. Add 10.00 mL of each sample and standard to separate 14-mL screw-cap vials containing 2.00 mL of pentane. Shake vigorously for 1 min to effect the separation. Wait 60 s for the phases to separate. Inject 3.0-pL aliquots of the pentane layer into a GC equipped with a 2-mm internal diameter, 2-m long glass column packed with a stationary phase of 10% squalane on a packing material of 80/100 mesh Chromosorb WAW. Operate the column at 67 °C and a flow rate of 25 mL/min. [Pg.576]

Physical and ionic adsorption may be either monolayer or multilayer (12). Capillary stmctures in which the diameters of the capillaries are small, ie, one to two molecular diameters, exhibit a marked hysteresis effect on desorption. Sorbed surfactant solutes do not necessarily cover ah. of a sohd iaterface and their presence does not preclude adsorption of solvent molecules. The strength of surfactant sorption generally foUows the order cationic > anionic > nonionic. Surfaces to which this rule apphes include metals, glass, plastics, textiles (13), paper, and many minerals. The pH is an important modifying factor in the adsorption of all ionic surfactants but especially for amphoteric surfactants which are least soluble at their isoelectric point. The speed and degree of adsorption are increased by the presence of dissolved inorganic salts in surfactant solutions (14). [Pg.236]

Capillary Electrophoresis. Capillaries were first appHed as a support medium for electrophoresis in the early 1980s (44,45). The glass capillaries used are typically 20 to 200 p.m in diameter (46), may be filled with buffer or gel, and are frequendy coated on the inside. Capillaries are used because of the high surface-to-volume ratio which allows high voltages without heating effects. The only limitations associated with capillaries are limits of detection and clearance of sample components. [Pg.183]

The finite size effects in the contact between a spherical lens of polyurethane and a soft flat sheet of crosslinked polyfdimethyl siloxane) (PDMS) has been addressed by Falsafi et al. [37]. They showed that for deformations corresponding to contact diameters larger than the sheet thickness, the compliance of the system was affected by the glass substrate supporting the soft sheet. In order to minimize the finite size effects in the adhesion measurement of small elastomeric lenses, Falsafi et al. [38] and Deruelle et al. [39] used relatively thick elastic sheets to support their samples. [Pg.89]

Net-tension failures can be avoided or delayed by increased joint flexibility to spread the load transfer over several lines of bolts. Composite materials are generally more brittle than conventional metals, so loads are not easily redistributed around a stress concentration such as a bolt hole. Simultaneously, shear-lag effects caused by discontinuous fibers lead to difficult design problems around bolt holes. A possible solution is to put a relatively ductile composite material such as S-glass-epoxy in a strip of several times the bolt diameter in line with the bolt rows. This approach is called the softening-strip concept, and was addressed in Section 6.4. [Pg.421]

In 1971, Hiatt et al. found that polyethylene oxide (PEO) of molecular weight about 100000 prevented the adsorption of rabies virus to porous glass with an average pore diameter of 1250 A. The support was modified by passage of one void volume of 0.4% solution of the polymer in water, followed by 5 or more volumes of distilled water or buffered salt solution. The virus was effectively purified from the admixtures of brain tissue fluid by means of size-exclusion chromatography on the modified glass column [28]. [Pg.143]

A glass particle settles under the action of gravity in a liquid. Obtain a dimensionless grouping of the variables involved. The falling velocity is found to be proportional to the square of the particle diameter when the other variables are constant. What will be the effect of doubling the viscosity of the liquid ... [Pg.17]


See other pages where Glass diameter, effect is mentioned: [Pg.325]    [Pg.246]    [Pg.59]    [Pg.14]    [Pg.529]    [Pg.93]    [Pg.97]    [Pg.131]    [Pg.402]    [Pg.1]    [Pg.258]    [Pg.251]    [Pg.258]    [Pg.327]    [Pg.216]    [Pg.406]    [Pg.230]    [Pg.332]    [Pg.335]    [Pg.1471]    [Pg.1869]    [Pg.2014]    [Pg.134]    [Pg.335]    [Pg.16]    [Pg.171]    [Pg.187]    [Pg.198]    [Pg.351]    [Pg.901]    [Pg.1010]    [Pg.538]    [Pg.255]    [Pg.17]    [Pg.25]    [Pg.90]    [Pg.26]    [Pg.443]    [Pg.96]   
See also in sourсe #XX -- [ Pg.159 ]




SEARCH



Diameter effect

Effective diameters

Glass effect

© 2024 chempedia.info