Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

General Principles of ADAS

ADAS seeks to provide integrating modeling. This is based on a number of strategic objectives which have become points of principle. These are to separate local atomic tasks from non-local issues, to provide derived atomic data close-linked to experimental spectroscopic data reduction, to provide consistent source function inputs to theoretical plasma modeling and to provide central management of atomic data. [Pg.400]

ADAS is centred on generalized collisional-radiative (GCR) theory. The theory recognizes relaxation time-scales of atomic processes and how these relate to plasma relaxation times, metastable states, secondary collisions etc. Attention to these aspects - rigorously specified in generalized collisional-radiative theory - allow an atomic description suitable for modeling and analyzing spectral emission from most static and dynamic plasmas in the fusion and astrophysical domains [3,4]. [Pg.400]

From these time-scales, it may be assumed in most circumstances that the free electrons have a Maxwellian distribution and that the dominant populations of impurities in the plasma are those of the ground and metastable states of the various ions. The dominant populations evolve on time-scales of the order of plasma diffusion time-scales and so should be modeled dynamically, that is in the particle number continuity equations, along with the momentum and energy equations of plasma transport theory. The excited populations of impurities on the other hand may be assumed relaxed with respect to the instantaneous dominant populations, that is they are in a quasi-equilibrium. The quasi-equilibrium is determined by local conditions of electron temperature and electron density. So, the atomic modeling may be partially de-coupled from the impurity transport problem into local calculations which provide quasi-equilibrium excited ion populations and effective emission coefficients (PEC coefficients) and then effective source coefficients (GCR coefficients) for dominant populations which must be entered into the transport equations. The solution of the transport equations establishes the spatial and temporal behaviour of the dominant populations which may then be re-associated with the local emissivity calculations, for matching to and analysis of observations. [Pg.400]


See other pages where General Principles of ADAS is mentioned: [Pg.361]    [Pg.400]   


SEARCH



General principles

Generality principle

© 2024 chempedia.info