Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Radiative theory

ADAS is centred on generalized collisional-radiative (GCR) theory. The theory recognizes relaxation time-scales of atomic processes and how these relate to plasma relaxation times, metastable states, secondary collisions etc. Attention to these aspects - rigorously specified in generalized collisional-radiative theory - allow an atomic description suitable for modeling and analyzing spectral emission from most static and dynamic plasmas in the fusion and astrophysical domains [3,4]. [Pg.400]

In this period there was a great attention about the molecularity of mechanisms and of particularly interest was a debate about unimolecular reactions. The debate was that about the so called Radiative Theory (King Laidler, 1984), proposed mainly by Jean Baptiste Perrin (1870-1942), around 1917. Perrin propwsed that unimolecular processes was activated only by blackbody radiation. The hypwthesis, fallacious, continued for nearly ten years involving many and important figures as Einstein for example. Even being wrong Radiative Theory represents an interesting case study and boosted the research on different activation causes other than thermal collisions. [Pg.20]

Section BT1.2 provides a brief summary of experimental methods and instmmentation, including definitions of some of the standard measured spectroscopic quantities. Section BT1.3 reviews some of the theory of spectroscopic transitions, especially the relationships between transition moments calculated from wavefiinctions and integrated absorption intensities or radiative rate constants. Because units can be so confusing, numerical factors with their units are included in some of the equations to make them easier to use. Vibrational effects, die Franck-Condon principle and selection mles are also discussed briefly. In the final section, BT1.4. a few applications are mentioned to particular aspects of electronic spectroscopy. [Pg.1119]

Juzeliunas G and Andrews D L 1999 Unified theory of radiative and radiationless energy transfer Resonance Energy Transfer ed D L Andrews and A A Demidov (New York Wiley) pp 65-107... [Pg.3030]

Time dependent perturbation theory provides an expression for the radiative lifetime of an excited electronic state, given by Tr ... [Pg.441]

As seen in the radiationless process, intercombinational radiative transitions can also be affected by spin-orbit interaction. As stated previously, spin-orbit coupling serves to mix singlet and triplet states. Although this mixing is of a highly complex nature, some insight can be gained by first-order perturbation theory. From first-order perturbation theory one can write a total wave function for the triplet state as... [Pg.133]

The master equation approach considers the state of a spur at a given time to be composed of N. particles of species i. While N is a random variable with given upper and lower limits, transitions between states are mediated by binary reaction rates, which may be obtained from bimolecular diffusion theory (Clifford et al, 1987a,b Green et al., 1989a,b, 1991 Pimblott et al., 1991). For a 1-radi-cal spur initially with Ng radicals, the probability PN that it will contain N radicals at time t satisfies the master equation (Clifford et al., 1982a)... [Pg.221]

The polydiacetylene crystals (1-4) most strikingly corroborate these conjectures. Along this line of thought is also shown that this electron-phonon interaction is intimately interwoven with the polymerisation process in these materials and plays a profound role there. We make the conjecture that this occurs through the motion of an unpaired electron in a non-bonding p-orbital dressed with a bending mode and guided by a classical intermolecular mode. Such a polaron type diffusion combined with the theory of non radiative transitions explains the essentials of the spectral characteristics of the materials as well as their polymerisation dynamics. ... [Pg.168]

Here we outline a dynamical description (42) of the polymerisation of the polydiacetylenes. The approach relies much on the one used (43,44) in the theory of non radiative transitions in crystals and the soliton description of the defects in the lD-or-ganic semiconductors. [Pg.181]

A. S. Eddington develops theory of radiative equilibrium (building on earlier work by A. Schuster and K. Schwarzschild) and applies it to internal constitution of stars. He also pioneers physics of interstellar gas. [Pg.400]

This paper is organized as follows. Section 2 presents non-trivial properties of the velocity distribution functions for RIG for quasi and ordinary particles in one dimensions. In section 3 we find the state equation for relativistic ideal gas of both types. Section 4 presents the distribution function for the observed frequency radiation generated for quasi and ordinary particles of the relativistic ideal gas, for fluxons under transfer radiation and radiative atoms of the relativistic ideal gas. Section 5 presents a generalization of the theory of the relativistic ideal gas in three dimensions and the distribution function for particles... [Pg.161]

F. Perrin Theory of fluorescence polarization (sphere). Perriris equation Indirect determination of lifetimes in solution. Comparison with radiative lifetimes... [Pg.9]

Turning to the fully quantum mechanical approach, we find that the lowest order rate theory for general non-radiative relaxation processes also provides a factorized rate expression ... [Pg.58]

Group theory can also be applied to determine whether an optical transition is allowed in a particular optical center. As we showed in Section 5.3, the probability of a radiative transition between two given states, (initial) and (final), is proportional to... [Pg.251]

When Jens Oddershede was elected a Fellow of the American Physical Society in 1993, the citation read For contribution to the theory, computation, and understanding of molecular response properties, especially through the elucidation implementation of the Polarization Propagator formalism. Although written more than a decade ago, it is still true today. The common thread that has run through Jens work for the past score of years is development of theoretical methods for studying the response properties of molecules. His primary interest has been in the development and applications of polarization propagator methods for direct calculation of electronic spectra, radiative lifetime and linear and non-linear response properties such as dynamical dipole polarizabilities and... [Pg.1]

The following conclusion of the theory (1 ) is extremely important. The radiative transition 2 > Sq in a sandwich dimer is forbidden. In case of a dimer of 04 symmetry, the transition 2 (4Eg) > Sg (A g) is forbidden because of parity. There is no principle difference in the splitting nature of 2 and states for sandwich type dimers with lesser than D4h symmetry and the 2 > Sq transition remains quasi forbidden. This makes it possible to explain low P2 values obtained in (1 ) by a decrease of the 2 > Sg transition radiative probability, i.e., by decreasing or 2 > Sq fluorescence quantum yield in dimeric TTA complexes. In the case of non-sandwich dimer structures with location of subunits in one plane, the So state also is split into two states (high 202y and low 2B3g). However, two radiative transitions S2(B2y)... [Pg.124]

On the other hand, we must somehow close the Universe, or more precisely, find some way of giving it the critical density, since this is what inflation demands. Indeed, it is required not only by inflationary theory, but also by close scrutiny of the leopard skin p attern that constitutes the microwave background, radiative relic from the B ig B ang. We... [Pg.209]

P. M. Fauchet, Porous Silicon Photoluminescence and Electroluminescent Devices C. Delerue, G. Allan, and M. Lannoo, Theory of Radiative and Nonradiative Processes in Silicon Nanocrystallites L. Bros, Silicon Polymers and Nanocrystals... [Pg.303]

Using gas kinetic molecular theory, show that under typical atmospheric conditions of pressure and temperature corresponding to an altitude of 5 km (see Appendix V) collisional deactivation of a C02 molecule will be much faster than reemission of the absorbed radiation. Take the collision diameter to be 0.456 nm and the radiative lifetime of the 15-/rm band of C02 to be 0.74 s (Goody and Yung, 1989). [Pg.829]

According to the ground rules laid down at the beginning of this book, multiple scattering is excluded from consideration. But it is not always prudent to pretend that multiple scattering does not exist. Fortunately, it is almost trivial—the mathematical apparatus of radiative transfer theory is unnecessary—to extend our treatment of scattering and circular polarization to multiple scattering media, and in this instance it is worth the small amount of effort required to do so. [Pg.451]


See other pages where Radiative theory is mentioned: [Pg.2]    [Pg.1046]    [Pg.613]    [Pg.18]    [Pg.15]    [Pg.164]    [Pg.110]    [Pg.141]    [Pg.26]    [Pg.34]    [Pg.301]    [Pg.101]    [Pg.351]    [Pg.314]    [Pg.361]    [Pg.82]    [Pg.395]    [Pg.382]    [Pg.166]    [Pg.179]    [Pg.200]    [Pg.180]    [Pg.361]    [Pg.137]    [Pg.254]    [Pg.285]    [Pg.302]    [Pg.80]   
See also in sourсe #XX -- [ Pg.141 ]




SEARCH



Radiative collisions theory

Radiative transfer theory

The Theory of Controlled Radiative Gamma Decay

Transition, radiative theory

© 2024 chempedia.info