Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Excited the population

After the excitation the population N2 decreases and the whole fluorescence decay, if exponential, gives a mean quenching rate Q according to ... [Pg.132]

A simplified model for the fluorescence process can be drawn up for two levels [662]. When a two-level system is considered (Fig. 125) and excitation is expected to occur only as a result of absorption of radiation with radiant density pv, without any contributions from collision processes to the excitation, the population of the excited level (n2) can be given by ... [Pg.290]

The population in the upper state as a flinction of time is shown in figure A1.6.2. There are several important things to note. At early times, resonant and non-resonant excitation produce the same population in the upper state because, for short times, the population in the upper state is independent of the Rabi frequency ... [Pg.228]

One should also notice that resonant excitation completely cycles the population between the lower and upper state with a period of 2ji/0. Non-resonant excitation also cycles population between the states but never completely depopulates the lower state. Finally, one should notice that non-resonant excitation cycles population between the two states at a faster rate than resonant excitation. [Pg.229]

Figure Al.6.2. The population in the upper state as a fiinction of time for resonant excitation (frill curve) and for non-resonant excitation (dashed curve). Figure Al.6.2. The population in the upper state as a fiinction of time for resonant excitation (frill curve) and for non-resonant excitation (dashed curve).
Figure Al.6,8 shows the experimental results of Scherer et al of excitation of I2 using pairs of phase locked pulses. By the use of heterodyne detection, those authors were able to measure just the mterference contribution to the total excited-state fluorescence (i.e. the difference in excited-state population from the two units of population which would be prepared if there were no interference). The basic qualitative dependence on time delay and phase is the same as that predicted by the hannonic model significant interference is observed only at multiples of the excited-state vibrational frequency, and the relative phase of the two pulses detennines whether that interference is constructive or destructive. Figure Al.6,8 shows the experimental results of Scherer et al of excitation of I2 using pairs of phase locked pulses. By the use of heterodyne detection, those authors were able to measure just the mterference contribution to the total excited-state fluorescence (i.e. the difference in excited-state population from the two units of population which would be prepared if there were no interference). The basic qualitative dependence on time delay and phase is the same as that predicted by the hannonic model significant interference is observed only at multiples of the excited-state vibrational frequency, and the relative phase of the two pulses detennines whether that interference is constructive or destructive.
Figure Bl.3.7. A WMEL diagram for the seventh order Raman echo. The first two field actions create the usual Raman vibrational coherence which dephases and, to the extent that inliomogeneity is present, also weakens as the coherence from different cliromophores walks oflP. Then such dephasing is stopped when a second pair of field actions converts this coherence into a population of the excited vibrational state / This is followed by yet another pair of field actions which reconvert the population into a vibrational coherence, but now one with phase opposite to the first. Now, with time, the walked-oflP component of the original coherence can reassemble into a polarization peak that produces the Raman echo at frequency oi = 2(o - (O2... Figure Bl.3.7. A WMEL diagram for the seventh order Raman echo. The first two field actions create the usual Raman vibrational coherence which dephases and, to the extent that inliomogeneity is present, also weakens as the coherence from different cliromophores walks oflP. Then such dephasing is stopped when a second pair of field actions converts this coherence into a population of the excited vibrational state / This is followed by yet another pair of field actions which reconvert the population into a vibrational coherence, but now one with phase opposite to the first. Now, with time, the walked-oflP component of the original coherence can reassemble into a polarization peak that produces the Raman echo at frequency oi = 2(o - (O2...
An interferometric method was first used by Porter and Topp [1, 92] to perfonn a time-resolved absorption experiment with a -switched ruby laser in the 1960s. The nonlinear crystal in the autocorrelation apparatus shown in figure B2.T2 is replaced by an absorbing sample, and then tlie transmission of the variably delayed pulse of light is measured as a fiinction of the delay This approach is known today as a pump-probe experiment the first pulse to arrive at the sample transfers (pumps) molecules to an excited energy level and the delayed pulse probes the population (and, possibly, the coherence) so prepared as a fiinction of time. [Pg.1979]

This technique with very high frequency resolution was used to study the population of different hyperfme structure levels of the iodine atom produced by the IR-laser-flash photolysis of organic iodides tluough multiphoton excitation ... [Pg.2128]

The chemical-activation step is between one and two orders of magnitude faster than the subsequent collisional deactivation of vibrationally excited O2. Finally, the population of individual vibrational levels v" of O2 is probed tluough LIF in the Schiunann-Runge band Oi X E") after exciting the oxygen... [Pg.2139]

Equations (C3.4.5) and (C3.4.6) cover the common case when all molecules are initially in their ground electronic state and able to accept excitation. The system is also assumed to be impinged upon by sources F. The latter are usually expressible as tlie product crfjo, where cr is an absorjition cross section, is tlie photon flux and ftois tlie population in tlie ground state. The common assumption is tliat Jo= q, i.e. practically all molecules are in tlie ground state because n n. This is tlie assumption of linear excitation, where tlie system exhibits a linear response to tlie excitation intensity. This assumption does not hold when tlie extent of excitation is significant, i.e. [Pg.3022]

QCMD describes a coupling of the fast motions of a quantum particle to the slow motions of a classical particle. In order to classify the types of coupled motion we eventually have to deal with, we first analyze the case of an extremely heavy classical particle, i.e., the limit M —> oo or, better, m/M 0. In this adiabatic limit , the classical motion is so slow in comparison with the quantal motion that it cannot induce an excitation of the quantum system. That means, that the populations 6k t) = of the... [Pg.398]

Standardizing the Method Equation 10.34 shows that emission intensity is proportional to the population of the excited state, N, from which the emission line originates. If the emission source is in thermal equilibrium, then the excited state population is proportional to the total population of analyte atoms, N, through the Boltzmann distribution (equation 10.35). [Pg.438]

If the temperature were raised, more molecules would attain the excited state, but even at 50,000°C there would be only one excited-state atom for every two ground-state atoms, and stimulated emission would not produce a large cascade effect. To reach the excess of stimulated emissions needed to build a large cascade (lasing), the population of excited-state molecules must exceed that of the ground state, preferably at normal ambient temperatures. This situation of an excess of excited-state over ground-state molecules is called a population inversion in order to contrast it with normal ground-state conditions. [Pg.124]

Because of the relatively high population of the u" = 0 level the v" = 0 progression is likely to be prominent in the absorption spectrum. In emission the relative populations of the i/ levels depend on the method of excitation. In a low-pressure discharge, in which there are not many collisions to provide a channel for vibrational deactivation, the populations may be somewhat random. However, higher pressure may result in most of the molecules being in the v = 0 state and the v = 0 progression being prominent. [Pg.245]


See other pages where Excited the population is mentioned: [Pg.305]    [Pg.345]    [Pg.46]    [Pg.10]    [Pg.36]    [Pg.101]    [Pg.134]    [Pg.305]    [Pg.345]    [Pg.46]    [Pg.10]    [Pg.36]    [Pg.101]    [Pg.134]    [Pg.239]    [Pg.239]    [Pg.239]    [Pg.259]    [Pg.263]    [Pg.913]    [Pg.1071]    [Pg.1198]    [Pg.1297]    [Pg.1570]    [Pg.1976]    [Pg.1977]    [Pg.1985]    [Pg.2061]    [Pg.2420]    [Pg.2447]    [Pg.2478]    [Pg.205]    [Pg.390]    [Pg.434]    [Pg.125]    [Pg.126]    [Pg.126]    [Pg.127]    [Pg.36]    [Pg.389]    [Pg.392]   
See also in sourсe #XX -- [ Pg.81 ]




SEARCH



© 2024 chempedia.info