Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Gas fluidized reactors

Polymerization in the Gas Phase. Many polymerization catalysts can be adapted for use in the gas phase. A gas-phase reactor contains a bed of small PE particles that is agitated either by a mechanical stirrer or by employing the fluidized-bed technique. These processes are economical because they do not requite solvent tecitculation streams. [Pg.368]

Fig. 4. Multiphase fluid and fluid—solids reactors (a) bubble column, (b) spray column, (c) slurry reactor and auxiUaries, (d) fluidization unit, (e) gas—bquid—sobd fluidized reactor, (f) rotary kiln, and (g) traveling grate or belt drier. Fig. 4. Multiphase fluid and fluid—solids reactors (a) bubble column, (b) spray column, (c) slurry reactor and auxiUaries, (d) fluidization unit, (e) gas—bquid—sobd fluidized reactor, (f) rotary kiln, and (g) traveling grate or belt drier.
Reaction conditions are generally mild, but they differ from one process to another. In the newer Unipol process (Eigure 12-1) used to produce both HDPE and LLDPE, the reaction occurs in the gas phase. Ethylene and the comonomers (propene, 1-butene, etc.) are fed to the reactor containing a fluidized bed of growing polymer particles. Operation temperature and pressure are approximately 100°C and 20 atmospheres. A single-stage centrifugal compressor circulates unreacted ethylene. The circulated gas fluidizes the bed and removes some of the exothermic reaction heat. The product from the reactor is mixed with additives and then pelletized. New modifications for gas-phase processes have been reviewed by Sinclair. ... [Pg.327]

In the second class, the particles are suspended in the liquid phase. Momentum may be transferred to the particles in different ways, and it is possible to distinguish between bubble-column slurry reactors (in which particles are suspended by bubble movement), stirred-slurry reactors (in which particles are suspended by bubble movement and mechanical stirring), and gas-liquid fluidized reactors (in which particles are suspended by bubble movement and cocurrent liquid flow). [Pg.72]

All these gas-liquid-particle operations are of industrial interest. For example, desulfurization of liquid petroleum fractions by catalytic hydrogenation is carried out, on the industrial scale, in trickle-flow reactors, in bubble-column slurry reactors, and in gas-liquid fluidized reactors. [Pg.72]

Catalytic desulfurization is at present carried out industrially by at least three of the major types of gas-liquid-particle operations referred to in Section I trickle reactors, bubble-column slurry reactors, and gas-liquid fluidized reactors. [Pg.75]

Van Driesen and Stewart (V4) have reported temperature measurements for various locations in commercial gas-liquid fluidized reactors for the large-scale catalytic desulfurization and hydrocracking of heavy petroleum fractions (2500 barrels per day capacity). The hydrogenation was carried out in two stages the maximum and minimum temperatures measured were 774° and 778°F for the first stage and 768° and 770°F for the second. These results indicate that gas-liquid fluidized reactors are characterized by a high effective thermal conductivity. [Pg.129]

Fluidized-bed CVD was developed in the late 1950s for a specific application the coating of nuclear-fuel particles for high temperature gas-cooled reactors. PI The particles are uranium-thorium carbide coated with pyrolytic carbon and silicon carbide for the purpose of containing the products of nuclear fission. The carbon is obtained from the decomposition of propane (C3H8) or propylene... [Pg.133]

The reactor is a gas-fluidized bed for which the fractional tubularity model is usually appropriate. [Pg.578]

One of the advanced concepts for capturing CO2 is an absorption process that utilizes dry regenerable sorbents. Pure sodium bicarbonate from Dongyang Chemical Company and spray-dried sorbents were used to examine the characteristics of CO2 reaction in a flue gas environment. The chemical characteristics were investigated in a fast fluidized reactor of 0.025 m i.d., and the effects of several variables on sorbent activity, including gas velocity (1.5 to 3.5 m/s), temperature (40 to 70 °C), and solid concentration (15 to 25 kg/m /s)], were examined in a fast fluidized-bed. Spray-dried Sorb NX30 showed fast kinetics in the fluidized reactor. [Pg.501]

The fluidized reactor can be a bubbling fluidized type or a fast fluidized type, depending on the gas velocity and the reactivity of the sorbents. We adopted a fast fluidized bed type reactor for carbonation and regeneration reactions in order to identify the chemical characteristics of sorbents in a fast fluidized reactor of 0.025 m i.d. [Pg.502]

The reactivities of pure NaHCOa solid. Sorb NHR, NHR5, and NX30 sorbents were examined in a fast fluidized bed reactor. The CO2 removal of the pure NaHCOa solid increased from 3 % to 25 % when the variables were altered. Removal increased as gas velocity was decreased, as the carbonation temperature was decreased, or as the solid circulation rate was increased. The CO2 removal of Sorb NHR and NHR5 was initially maintained at 100 % for a short period of time but quickly dropped to a 10 to 20 % removal. However, the Sorb NX30 sorbent showed fast kinetics in the fast fluidized reactor, capturing all of the 10 % of the CO2 in the flue gas within 3 seconds in the fast fluidized reactor. [Pg.504]

In contrast, the high-temperature reactor operates at -350 °C and 25 bar, using a gas-fluidized bed reactor of either the circulating or the normal type. The high-tem-perature process is mainly used to produce gasoline and chemicals, such as alpha olefins, and the low temperature process to produce waxes. [Pg.325]

In gas phase reactors, the monomer is introduced to the bottom of reactor where it percolates up through a fluidized bed of polymer granules and inert-media supported catalyst. A fraction of the monomer reacts to form more polymer granules, the remaining monomer being drawn from the top of the reactor, cooled, and recycled. Polymer granules are continuously wthdrawn from the bottom of the fluidized bed and the catalyst is replenished. [Pg.309]

In this section, representative results are reviewed to provide a prospective of reactor modeling techniques which deal with bed size. There probably is additional unpublished proprietary material in this area. Early studies of fluidized reactors recognized the influence of bed diameter on conversion due to less efficient gas-solid contacting. Experimental studies were used to predict reactor performance. Frye et al. (1958) used... [Pg.4]

DeGroot, J. H., Scaling-up of Gas-fluidized Bed Reactors, Proc. of the Int. Symp. on Fluidization, (A. A. H. Drinkenburg, ed.), Netherlands University Press, Amsterdam (1967)... [Pg.105]

Obviously, these two items are not strictly separated in contrast, the most fruitful approach is when they are simultaneously followed, so that they can mutually benefit from each other. In this chapter, we want to focus on the use of simulation methods as a design tool for gas-fluidized bed reactors, for which we consider gas-solid flows at four distinctive levels of modeling. However, before discussing the multilevel scheme, it is useful to first briefly consider the numerical modeling of the gas and solid phase separately. [Pg.67]

Kuipers, J. A. M., Hoomans, B. P. B, and van Swaaij, W. P. M. Hydrodynamic Modeling of Gas-Fluidized Beds and their Role for Design and Operation of Fluidized Bed Chemical Reactors. Proceedings of the Fluidization IX conference, 15-30, Durango, USA (1998). [Pg.148]


See other pages where Gas fluidized reactors is mentioned: [Pg.483]    [Pg.483]    [Pg.24]    [Pg.483]    [Pg.483]    [Pg.24]    [Pg.384]    [Pg.416]    [Pg.507]    [Pg.519]    [Pg.528]    [Pg.277]    [Pg.478]    [Pg.478]    [Pg.328]    [Pg.330]    [Pg.168]    [Pg.75]    [Pg.76]    [Pg.112]    [Pg.414]    [Pg.415]    [Pg.416]    [Pg.417]    [Pg.299]    [Pg.502]    [Pg.504]    [Pg.505]    [Pg.66]    [Pg.66]    [Pg.66]    [Pg.141]   
See also in sourсe #XX -- [ Pg.478 ]

See also in sourсe #XX -- [ Pg.478 ]




SEARCH



Fluidized Gas-Liquid-Solid Reactors

Fluidized reactors

Gas Flow in a Fluidized Bed Reactor

Gas fluidization

Gas-fluidized-bed reactor

Gas-phase, fluidized bed reactor

Gas-solid fluidized bed reactors

© 2024 chempedia.info