Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Compression, gas

Once the bubble point is reached (at point B), the first bubble of ethane vapour is released. From point B to C liquid and gas co-exist in the cell, and the pressure is maintained constant as more of the liquid changes to the gaseous state. The system exhibits infinite compressibility until the last drop of liquid is left In the cell (point C), which is the dew point. Below the dew point pressure only gas remains in the cell, and as pressure is reduced below the dew point, the volume increase is determined by the compressibility of the gas. The gas compressibility is much greater than the liquid compressibility, and hence the change of volume for a given reduction in pressure (the... [Pg.98]

Density is the most commonly measured property of a gas, and is obtained experimentally by measuring the specific gravity of the gas (density of the gas relative to air = 1). As pressure increases, so does gas density, but the relationship is non-linear since the dimensionless gas compressibility (z-factor) also varies with pressure. The gas density (pg) can be calculated at any pressure and temperature using the real gas law ... [Pg.107]

The value of the compresjiibility of oil is a function of the amount of dissolved gas, but is in the order of 10 x 10" psi" By comparison, typical water and gas compressibilities are 4x10" psi" and 500 x 10" psi" respectively. Above the bubble point in an oil reservoir the compressibility of the oil is a major determinant of how the pressure declines for a given change in volume (brought about by a withdrawal of reservoir fluid during production). [Pg.109]

From the above plot, it can be seen that the recovery factor for gas reservoirs depends upon how low an abandonment pressure can be achieved. To produce at a specified delivery pressure, the reservoir pressure has to overcome a series of pressure drops the drawdown pressure (refer to Figure 9.2), and the pressure drops in the tubing, processing facility and export pipeline (refer to Figure 9.12). To improve recovery of gas, compression facilities are often provided on surface to boost the pressure to overcome the pressure drops in the export line and meet the delivery pressure specified. [Pg.198]

One of the main surface equipment items typically required for gas fields is compression, which is installed to allow a low reservoir pressure to be attained. Gas compression takes up a large space and is expensive. If gas compression is not initially required on a platform, then its installation is usually delayed until it becomes necessary. This reduces the initial capital investment and capital exposure. Figure 8.12 indicates when gas compression is typically installed ... [Pg.199]

As a field matures, bottlenecks may appear in other areas, such as water treatment or gas compression processes, and become factors limiting oil or gas production. These issues can often be addressed both by surface and subsurface options, though the underlying justification remains the same the NPV of a debottlenecking exercise (net cost of action versus the increase in net revenue) must be positive. [Pg.359]

Ethylene Stripping. The acetylene absorber bottom product is routed to the ethylene stripper, which operates at low pressure. In the bottom part of this tower the loaded solvent is stripped by heat input according to the purity specifications of the acetylene product. A lean DMF fraction is routed to the top of the upper part for selective absorption of acetylene. This feature reduces the acetylene content in the recycle gas to its minimum (typically 1%). The overhead gas fraction is recycled to the cracked gas compression of the olefin plant for the recovery of the ethylene. [Pg.391]

Hydrodynamic principles for gas bearings are similar to those involved with Hquid lubricants except that gas compressibility usually is a significant factor (8,69). With gas employed as a lubricant at high speeds, start—stop wear is minimized by selection of wear-resistant materials for the journal and bearing. This may involve hard coatings such as tungsten carbide or chromium oxide flame plate, or soHd lubricants, eg, PTFE and M0S2. [Pg.252]

Approximately 45% of the world s phthaUc anhydride production is by partial oxidation of 0-xylene or naphthalene ia tubular fixed-bed reactors. Approximately 15,000 tubes of 25-mm dia would be used ia a 31,000 t/yr reactor. Nitrate salts at 375—410°C are circulated from steam generators to maintain reaction temperatures. The resultant steam can be used for gas compression and distillation as one step ia reduciag process energy requirements (100). [Pg.525]

Rankine Cycle Thermodynamics. Carnot cycles provide the highest theoretical efficiency possible, but these are entirely gas phase. A drawback to a Carnot cycle is the need for gas compression. Producing efficient, large-volume compressors has been such a problem that combustion turbines and jet engines were not practical until the late 1940s. [Pg.365]

Single-acting air-cooled and water-cooled air compressors are available in sizes up to about 75 kW (100 hp). Such units are available in one, two, three, or four stages for pressure as high as 24 MPa (3500 IbFin"). These machines are seldom used for gas compression because of the difficulty of preventing gas leakage and contamination of the lubricating oil. [Pg.929]

Most ethylene plants operate continuously with the expander functioning at or near design point. However, by using inlet guide vanes, the expander can still provide optimum performance at off-design conditions. Also, the expansion process generates power, which is used by the compressor. The ethylene enters the expanders at approximately 26 bar (377 psia) and exits at approximately 6 bar (87 psia). The expanders generate over 2,000 hp for gas compression. [Pg.461]

Ideal gas obeys the equation of state PV = MRT or P/p = MRT, where P denotes the pressure, V the volume, p the density, M the mass, T the temperature of the gas, and R the gas constant per unit mass independent of pressure and temperature. In most cases the ideal gas laws are sufficient to describe the flow within 5% of actual conditions. When the perfect gas laws do not apply, the gas compressibility factor Z can be introduced ... [Pg.113]

Fuel systems can cause many problems, and fuel nozzles are especially susceptible to trouble. A gaseous fuel system consists of fuel filters, regulators, and gauges. Fuel is injected at a pressure of about 60 psi (4 Bar) above the compressor discharge pressure for which a gas compression system is needed. Knockout drums or centrifuges are recommended, and should be implemented to ensure no liquid carry-overs in the gaseous system. [Pg.161]

L = line length, miles Z = average gas compressibility D = pipe inside diameter, in. h2 = elevation at terminus of line, ft h = elevation at origin of line, ft Pa, = average line pressure, psia E = efficiency factor... [Pg.9]

L = line length, miles T = gas temperature, °R Z = gas compressibility factor D = pipe inside diameter, in. [Pg.10]

Pipecalc 2.0, Gulf Publishing Company, Houston, Texas. Note Pipecalc 2.0 will calculate the compressibility factor, minimum pipe ID, upstream pressure, downstream pressure, and flow rate for Panhandle A, Panhandle B, Weymouth, AGA, and Colebrook-White equations. The flow rates calculated in the above sample calculations will differ slightly from those calculated with Pipecalc 2.0 since the viscosity used in the examples was extracted from Figure 5, p. 147. Pipecalc uses the Dranchuk et al. method for calculating gas compressibility. [Pg.10]

Z = Gas compressibility factor T = Absolute temperature, °R Mw = Gas molecular weight... [Pg.282]

After all the previous statements, it would seem very difficult to select a piston. speed. For someone without direct experience, the following guidelines can be used as a starting point. Actual gas compressing experience should be solicited when a new compressor for the same gas is being eonsidered. These values will apply to the industrial process type of compressor with a double-acting cylinder construction. For horizontal compressors with lubricated cylinders, use 700 feet per minute (fpm) and for nonlubricated cylinders use 600 fpin. For vertical compressors with lubricated cylinders, use 800 fpm and for nonlubricated cylinders use 700 fpm. [Pg.58]

Step 1. Find the suction and discharge volumetric efficiencies using Equations 3.5 and 3.21 with rp = 831/514 = 1.617. The natural gas compressibility values can be obtained by using the gravity/compressibility charts (see Appendix B-29 through B-35) for a specific gravity of. 60. Both Zj and Z2 values are. 93. Applying Equation 3.6, the value of f may be obtained as follows ... [Pg.88]

To start, convert the flow to values estimated to be the compressor inlet conditions. Initially, the polytropic head equation (Equation 2.73) will be used with n as the polytropic compression exponent. If prior knowledge of the gas indicates a substantial nonlinear tendency, the real gas compression exponent (Equation 2.76) should be substituted. As discussed m Chapter 2, an approximation may be made by using the linear average ut the inlet and outlet k values as the exponent or for the determination of the polytropic exponent. If only the inlet value of k is known, don t be too concerned. The calculations will be repeated several times as knowledge of the process for the compression cycle is developed. After selecting the k value, u,se Equation 2.71 and an estimated stage efficiency of 15 / to de clop the polytropic compression exponent n. [Pg.160]

The large, heavy-duty, integral engine-compressor has long been the workhorse of the gas compression industry. The in-line or V-shaped power cylinder, horizontal compressor cylinder configuration is lamitiar. [Pg.292]

Figure B-31. Natural gas compressibility chart, 0.75 S.G (Reprinted by permission and courtesy of Ingersoll-Rjiid i... Figure B-31. Natural gas compressibility chart, 0.75 S.G (Reprinted by permission and courtesy of Ingersoll-Rjiid i...

See other pages where Compression, gas is mentioned: [Pg.282]    [Pg.252]    [Pg.252]    [Pg.259]    [Pg.344]    [Pg.334]    [Pg.523]    [Pg.103]    [Pg.169]    [Pg.82]    [Pg.423]    [Pg.342]    [Pg.350]    [Pg.182]    [Pg.408]    [Pg.418]    [Pg.30]    [Pg.55]    [Pg.1129]    [Pg.1137]    [Pg.643]    [Pg.102]    [Pg.9]    [Pg.283]    [Pg.527]    [Pg.528]    [Pg.284]   
See also in sourсe #XX -- [ Pg.464 ]

See also in sourсe #XX -- [ Pg.429 ]

See also in sourсe #XX -- [ Pg.347 ]

See also in sourсe #XX -- [ Pg.38 ]

See also in sourсe #XX -- [ Pg.242 ]

See also in sourсe #XX -- [ Pg.183 ]

See also in sourсe #XX -- [ Pg.529 ]

See also in sourсe #XX -- [ Pg.523 ]

See also in sourсe #XX -- [ Pg.419 , Pg.420 , Pg.421 , Pg.422 , Pg.423 ]




SEARCH



Compressed gases

Compressible Gases

© 2024 chempedia.info