Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Liquid fugacity

The curve for f deviates increasingly with increasing pressure from ideal-behavior, which is shown by the dashed line, f = P, At Pf1 there is a sharp bre and the curve then rises very slowly with increasing pressure. Thus the fugacity liquid water at 300°C is a weak function of pressure. This behavior is eharacteris of liquids at temperatures well below the critical temperature. The fugacity coeffici decreases steadily from its zero-pressure value of unity as the pressure rises. I... [Pg.176]

In vapor-liquid equilibria, it is relatively easy to start the iteration because assumption of ideal behavior (Raoult s law) provides a reasonable zeroth approximation. By contrast, there is no obvious corresponding method to start the iteration calculation for liquid-liquid equilibria. Further, when two liquid phases are present, we must calculate for each component activity coefficients in two phases since these are often strongly nonlinear functions of compositions, liquid-liquid equilibrium calculations are highly sensitive to small changes in composition. In vapor-liquid equilibria at modest pressures, this sensitivity is lower because vapor-phase fugacity coefficients are usually close to unity and only weak functions of composition. For liquid-liquid equilibria, it is therefore more difficult to construct a numerical iteration procedure that converges both rapidly and consistently. [Pg.4]

In Chapter 2 we discuss briefly the thermodynamic functions whereby the abstract fugacities are related to the measurable, real quantities temperature, pressure, and composition. This formulation is then given more completely in Chapters 3 and 4, which present detailed material on vapor-phase and liquid-phase fugacities, respectively. [Pg.5]

The calculation of vapor and liquid fugacities in multi-component systems has been implemented by a set of computer programs in the form of FORTRAN IV subroutines. These are applicable to systems of up to twenty components, and operate on a thermodynamic data base including parameters for 92 compounds. The set includes subroutines for evaluation of vapor-phase fugacity... [Pg.5]

The data base contains provisions for a simple augmentation by up to eight additional compounds or substitution of other compounds for those included. Binary interaction parameters necessary for calculation of fugacities in liquid mixtures are presently available for 180 pairs. [Pg.5]

Equation (1) is of little practical use unless the fuga-cities can be related to the experimentally accessible quantities X, y, T, and P, where x stands for the composition (expressed in mole fraction) of the liquid phase, y for the composition (also expressed in mole fraction) of the vapor phase, T for the absolute temperature, and P for the total pressure, assumed to be the same for both phases. The desired relationship between fugacities and experimentally accessible quantities is facilitated by two auxiliary functions which are given the symbols (f... [Pg.14]

The activity coefficient y relates the liquid-phase fugacity... [Pg.14]

It is strictly for convenience that certain conventions have been adopted in the choice of a standard-state fugacity. These conventions, in turn, result from two important considerations (a) the necessity for an unambiguous thermodynamic treatment of noncondensable components in liquid solutions, and (b) the relation between activity coefficients given by the Gibbs-Duhem equation. The first of these considerations leads to a normalization for activity coefficients for nonoondensable components which is different from that used for condensable components, and the second leads to the definition and use of adjusted or pressure-independent activity coefficients. These considerations and their consequences are discussed in the following paragraphs. [Pg.17]

For such components, as the composition of the solution approaches that of the pure liquid, the fugacity becomes equal to the mole fraction multiplied by the standard-state fugacity. In this case,the standard-state fugacity for component i is the fugacity of pure liquid i at system temperature T. In many cases all the components in a liquid mixture are condensable and Equation (13) is therefore used for all components in this case, since all components are treated alike, the normalization of activity coefficients is said to follow the symmetric convention. ... [Pg.18]

In a binary liquid solution containing one noncondensable and one condensable component, it is customary to refer to the first as the solute and to the second as the solvent. Equation (13) is used for the normalization of the solvent s activity coefficient but Equation (14) is used for the solute. Since the normalizations for the two components are not the same, they are said to follow the unsymmetric convention. The standard-state fugacity of the solvent is the fugacity of the pure liquid. The standard-state fugacity of the solute is Henry s constant. [Pg.19]

We can now consider the most convenient form for writing the liquid-phase fugacity of component i. First we consider a condensable component and write... [Pg.21]

We find that the standard-state fugacity fV is the fugacity of pure liquid i at the temperature of the solution and at the reference pressure P. ... [Pg.21]

Chapter 3 discusses calculation of fugacity coefficient < ). Chapter 4 discusses calculation of adjusted activity coefficient Y fugacity of the pure liquid f9 [Equation (24)], and Henry s constant H. [Pg.24]

In the calculation of vapor-liquid equilibria, it is necessary to calculate separately the fugacity of each component in each of the two phases. The liquid and vapor phases require different techniques in this chapter we consider calculations for the vapor phase. [Pg.25]

At pressures to a few bars, the vapor phase is at a relatively low density, i.e., on the average, the molecules interact with one another less strongly than do the molecules in the much denser liquid phase. It is therefore a common simplification to assume that all the nonideality in vapor-liquid systems exist in the liquid phase and that the vapor phase can be treated as an ideal gas. This leads to the simple result that the fugacity of component i is given by its partial pressure, i.e. the product of y, the mole fraction of i in the vapor, and P, the total pressure. A somewhat less restrictive simplification is the Lewis fugacity rule which sets the fugacity of i in the vapor mixture proportional to its mole fraction in the vapor phase the constant of proportionality is the fugacity of pure i vapor at the temperature and pressure of the mixture. These simplifications are attractive because they make the calculation of vapor-liquid equilibria much easier the K factors = i i ... [Pg.25]

It is important to be consistent in the use of fugacity coefficients. When reducing experimental data to obtain activity coefficients, a particular method for calculating fugacity coefficients must be adopted. That same method must be employed when activity-coefficient correlations are used to generate vapor-liquid equilibria. [Pg.27]

Two additional illustrations are given in Figures 6 and 7 which show fugacity coefficients for two binary systems along the vapor-liquid saturation curve at a total pressure of 1 atm. These results are based on the chemical theory of vapor-phase imperfection and on experimental vapor-liquid equilibrium data for the binary systems. In the system formic acid (1) - acetic acid (2), <() (for y = 1) is lower than formic acid at 100.5°C has a stronger tendency to dimerize than does acetic acid at 118.2°C. Since strong dimerization occurs between all three possible pairs, (fij and not... [Pg.35]

To predict vapor-liquid or liquid-liquid equilibria in multicomponent systems, we require a method for calculating the fugacity of a component i in a liquid mixture. At system temperature T and system pressure P, this fugacity is written as a product of three terms... [Pg.39]

For condensable components, we use the symmetric normaliza-L as x - 1 therefore, the quantity in brackets is the fugacity of pure liquid i at system temperature and pressure. [Pg.39]

P the other terms provide corrections which at low or moderate pressure are close to unity. To use Equation (2), we require vapor-pressure data and liquid-density data as a function of temperature. We also require fugacity coefficients, as discussed in Chapter 3. [Pg.40]

As discussed in Chapter 3, at moderate pressures, vapor-phase nonideality is usually small in comparison to liquid-phase nonideality. However, when associating carboxylic acids are present, vapor-phase nonideality may dominate. These acids dimerize appreciably in the vapor phase even at low pressures fugacity coefficients are well removed from unity. To illustrate. Figures 8 and 9 show observed and calculated vapor-liquid equilibria for two systems containing an associating component. [Pg.51]

As discussed in Chapter 2, for noncondensable components, the unsymmetric convention is used to normalize activity coefficients. For a noncondensable component i in a multicomponent mixture, we write the fugacity in the liquid phase... [Pg.55]

In some cases, the temperature of the system may be larger than the critical temperature of one (or more) of the components, i.e., system temperature T may exceed T. . In that event, component i is a supercritical component, one that cannot exist as a pure liquid at temperature T. For this component, it is still possible to use symmetric normalization of the activity coefficient (y - 1 as x - 1) provided that some method of extrapolation is used to evaluate the standard-state fugacity which, in this case, is the fugacity of pure liquid i at system temperature T. For highly supercritical components (T Tj,.), such extrapolation is extremely arbitrary as a result, we have no assurance that when experimental data are reduced, the activity coefficient tends to obey the necessary boundary condition 1... [Pg.58]

To illustrate calculations for a binary system containing a supercritical, condensable component. Figure 12 shows isobaric equilibria for ethane-n-heptane. Using the virial equation for vapor-phase fugacity coefficients, and the UNIQUAC equation for liquid-phase activity coefficients, calculated results give an excellent representation of the data of Kay (1938). In this case,the total pressure is not large and therefore, the mixture is at all times remote from critical conditions. For this binary system, the particular method of calculation used here would not be successful at appreciably higher pressures. [Pg.59]

Equation (23) holds only when, for every component i, the same standard-state fugacity is used in both liquid phases. [Pg.63]

Enthalpies are referred to the ideal vapor. The enthalpy of the real vapor is found from zero-pressure heat capacities and from the virial equation of state for non-associated species or, for vapors containing highly dimerized vapors (e.g. organic acids), from the chemical theory of vapor imperfections, as discussed in Chapter 3. For pure components, liquid-phase enthalpies (relative to the ideal vapor) are found from differentiation of the zero-pressure standard-state fugacities these, in turn, are determined from vapor-pressure data, from vapor-phase corrections and liquid-phase densities. If good experimental data are used to determine the standard-state fugacity, the derivative gives enthalpies of liquids to nearly the same precision as that obtained with calorimetric data, and provides reliable heats of vaporization. [Pg.82]

For pure liquids the standard-stare fugacity is represented... [Pg.87]

We have repeatedly observed that the slowly converging variables in liquid-liquid calculations following the isothermal flash procedure are the mole fractions of the two solvent components in the conjugate liquid phases. In addition, we have found that the mole fractions of these components, as well as those of the other components, follow roughly linear relationships with certain measures of deviation from equilibrium, such as the differences in component activities (or fugacities) in the extract and the raffinate. [Pg.124]

Appendix C-2 gives constants for the zero-pressure, pure-liquid, standard-state fugacity equation for condensable components and constants for the hypothetical liquid standard-state fugacity equation for noncondensable components... [Pg.143]

At the user s option, one of two methods can be used to calculate the liquid-phase reference fugacity (1) An empirical... [Pg.211]

Subroutine REFUG. This subroutine calculates the liquid reference fugacities. Three options are possible. First, an equation of the form... [Pg.219]

The constants in Equation (5) are not the same as those in Equation (4). Using this saturation pressure, the pure-liquid reference fugacity at zero pressure is then calculated from the equation... [Pg.219]


See other pages where Liquid fugacity is mentioned: [Pg.175]    [Pg.175]    [Pg.4]    [Pg.6]    [Pg.26]    [Pg.39]    [Pg.39]    [Pg.61]    [Pg.76]    [Pg.86]    [Pg.110]    [Pg.111]    [Pg.138]    [Pg.142]    [Pg.211]    [Pg.212]    [Pg.212]    [Pg.218]    [Pg.219]   
See also in sourсe #XX -- [ Pg.27 ]




SEARCH



Effect of liquid composition on gas fugacities

Effect of liquid pressure on gas fugacity

Fugacities in Liquid Mixtures Activity Coefficients

Fugacity

Fugacity coefficient, liquid phase

Fugacity in liquid

Fugacity in the Liquid Phase

Fugacity liquid phase

Fugacity liquid, mixtures

Fugacity of a pure liquid

Fugacity of pure liquid

Liquid fugacity coefficient

Liquid solutions fugacity

Liquid, fugacity dilute

Liquid, fugacity general equation

Liquid, fugacity ideal

Liquid, fugacity nonideal

Liquid, fugacity partially miscible

Liquid, fugacity potential

Liquid, fugacity solutions, activity

Liquid, fugacity volume change

Solids, Liquids and the Fugacity Ratio

The Fugacity of Pure Liquids and Solids

Vapor-liquid equilibrium fugacity coefficient

© 2024 chempedia.info