Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

From trihalides

Many organic compounds are also prepared by hydrolysis of the appropriate halides. Alcohols can be prepared by hydrolysis of alkyl halides (though yields are often poor due to the formation of considerable amounts of olefins and polyolefins) phenols are prepared from aryl halides under pressure, in the presence of concentrated base (Samuel and Scheinmann, private communication), aromatic aldehydes and ketones from gem-dihalides (Doering and Dorfman, 1953), and aromatic acids from trihalides (Ponticorvo and Rittenberg, 1954). [Pg.42]

A complete set of trihalides for arsenic, antimony and bismuth can be prepared by the direct combination of the elements although other methods of preparation can sometimes be used. The vigour of the direct combination reaction for a given metal decreases from fluorine to iodine (except in the case of bismuth which does not react readily with fluorine) and for a given halogen, from arsenic to bismuth. [Pg.213]

The melting and boiling points of a series of similar covalent halides of a given element are found to increase from the fluoride to the iodide, i.e. as the molecular weight of the halide increases. Thus, the trihalides of phosphorus have melting points PF3 = 121.5 K. PCI3 = 161.2 K, PBrj = 233 K, PI3 = 334 K. [Pg.344]

The importance of the trihalides as industrial chemicals stems partly from their use in preparing crystalline boron (p. 141) but mainly from their ability to catalyse a wide variety of organic reactions.BF3 is the most widely used but BCI3 is employed in special cases. Thus, BF3 is manufactured on the multikilotonne scale whereas the production of BCI3 (USA, 1990) was 250 tonnes and BBr3 was about 23 tonnes. BF3 is shipped in steel cylinders containing 2.7 or 28 kg at a pressure of 10-12 atm, or in tube trailers... [Pg.199]

Despite this, they are good solvents for chloride-ion transfer reactions, and solvo-acid-solvo-base reactions (p. 827) can be followed conductimetri-cally, voltametrically or by use of coloured indicators. As expected from their constitution, the trihalides of As and Sb are only feeble electron-pair donors (p. 198) but they have marked acceptor properties, particularly towards halide ions (p. 564) and amines. [Pg.561]

The anhydrous trihalides are ionic, high melting, crystalline substances which, apart from the trifluorides are extremely deliquescent. As can be seen from Table 30.4, the coordination number of the Ln changes with the radii of the ions, from 9 for the trifluorides of the large lanthanides to 6 for the triiodides of the smaller lanthanides. Their chief importance has been as materials from which the pure metals can be prepared. [Pg.1240]

The formulated mechanism is supported by the finding that no halogen from the phosphorus trihalide is transferred to the a-carbon of the carboxylic acid. For instance, the reaction of a carboxylic acid with phosphorus tribromide and chlorine yields exclusively an a-chlorinated carboxylic acid. In addition, carboxylic acid derivatives that enolize easily—e.g. acyl halides and anhydrides—do react without a catalyst present. [Pg.160]

For single crystals, the same method is applied, using an excess of metal and of halogen. After reaction, the mixture of the sulfide halide and the halide is heated to a temperature slightly above the melting point of the respective halide. Perfect, small crystals for X-ray determination are formed. The excess of the trihalide is removed by treatment with anhydrous alcohol 92, 93, 96). CeSI may also be prepared from the sulfides 68, 93) CeSCl is formed by reaction 4 92). [Pg.359]

Unlike the di-f dihalides, such compounds differ little in energy from both the equivalent quantity of metal and trihalide, and from other combinations with a similar distribution of metal-metal and metal-halide bonding. So the reduced halide chemistry of the five elements shows considerable variety, and thermodynamics is ill-equipped to account for it. All four elements form di-iodides with strong metal-metal interaction, Prl2 occurring in five different crystalline forms. Lanthanum yields Lai, and for La, Ce and Pr there are hahdes M2X5 where X=Br or I. The rich variety of the chemistry of these tri-f compounds is greatly increased by the incorporahon of other elements that occupy interstitial positions in the lanthanide metal clusters [3 b, 21, 22]. [Pg.8]

Boron trihalides are strong Lewis acids that react with a wide collection of Lewis bases. Many adducts form with donor atoms from Group 15 (N, P, As) or Group 16 (O, S). Metal fluorides transfer F ion to BF3 to give tetrafluoroborate salts LiF + BF3 LiBF4 Tetrafluoroborate anion is an important derivative of BF3 because it is nonreactive. With four <7 bonds, [BF4 ] anion has no tendency to coordinate further ligands. Tetrafluoroborate salts are used in synthesis when a bulky inert anion is necessary. [Pg.1522]

Although 1,3,2-diazaphospholenium cations are usually prepared from neutral NHPs or 1,3,2-diazaphospholes via Lewis-acid induced substituent abstraction or A-alkylation, respectively (cf. Sect. 3.1.2), the group of Cowley was the first to describe a direct conversion of a-diimines into cationic heterocycles by means of a reaction that can be described as capture of a P(I) cation by diazabutadiene via [4+1] cycloaddition [31] (Scheme 4). The P(I) moiety is either generated by reduction of phosphorus trihalides with tin dichloride in the presence of the diimine [31] or, even more simply, by spontaneous disproportionation of phosphorus triiodide in the presence of the diimine [32], The reaction is of particular value as it provides a straightforward access to annulated heterocyclic ring systems. Thus, the tricyclic structure of 11 is readily assembled by addition of a P(I) moiety to an acenaphthene-diimine [31], and the pyrido-annulated cationic NHP 12 is generated by action of appropriate... [Pg.70]

Also studied was the effect of ether, which behaves as a retarder, on the polymerization. The retardation is most marked with the di- and trihalides and least with the monohalide and Zr (allyl) 4. In fact if large amounts of ether are present from the preparation, Zr(allyl)2Br2 shows hardly any activity at all. To avoid any possibility of contamination by ether, the halides in Table XI were prepared from pure ether-free Zr(allyl)4 in toluene by reaction with propargyl bromide. [Pg.289]

Because of the reactive covalent bonds to halogen atoms, all of the trihalides of the group VA elements hydrolyze in water. It is found that the rates decrease in the order P > As > Sb > Bi, which agrees with the decrease in covalent bond character that results from the increase in metallic character of the central atoms. Not all of the trihalides react in the same way. The phosphorus trihalides react according to the equation... [Pg.504]

From the standpoint of use, PC13 is the most important of the trihalides. In addition to hydrolysis, PC13 reacts with oxygen and sulfur to produce OPCl3 and SPC13, respectively. [Pg.505]


See other pages where From trihalides is mentioned: [Pg.1933]    [Pg.351]    [Pg.495]    [Pg.1933]    [Pg.351]    [Pg.495]    [Pg.58]    [Pg.249]    [Pg.467]    [Pg.139]    [Pg.291]    [Pg.233]    [Pg.237]    [Pg.239]    [Pg.563]    [Pg.965]    [Pg.990]    [Pg.1020]    [Pg.1120]    [Pg.1240]    [Pg.1271]    [Pg.129]    [Pg.123]    [Pg.8]    [Pg.98]    [Pg.95]    [Pg.549]    [Pg.504]    [Pg.479]    [Pg.766]   
See also in sourсe #XX -- [ Pg.1666 ]

See also in sourсe #XX -- [ Pg.341 ]




SEARCH



1,1,1-Trihalides from 2 molecules

Esters from 1,1,1-trihalides

From Aryl Tellurium Trihalides

From Aryl Tellurium Trihalides by Reduction

From Organo Tellurium Trihalides

Trihalides

© 2024 chempedia.info