Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Friedel enantioselectivity

The C2-symmetric bifunctional tridentate bis(thiazoline) 222 has been shown to promote the zinc(II)-catalyzed asymmetric Michael addition of nitroalkanes to nitroalkenes in high enantioselectivity <06JA7418>. The corresponding bis(oxazoline) ligand provides comparable enantioselectivity but higher product yield. The same bis(thiazoline) ligand has also been evaluated in the enantioselective Friedel-Crafts alkylation of indoles, but the enantioselectivity is moderate <06OL2115>. [Pg.261]

The catalyst, although applied in 1.5 equiv., also worked well with heteroarenes in the alkylation reactions. A simple and most plausible mode for the enantioselectivity of the Friedel-Crafts reaction has been shown in Scheme 33. It is evident from the model that the arene would approach from the front (Si) face, as the back (Re) face is blocked by the phenyl group present on the silicon. [Pg.365]

In 2004, Terada and coworkers reported the first asymmetric phosphoric acid-catalyzed Friedel-Crafts alkylation (Scheme 8). Aldimines 11 reacted with commercially available 2-methoxy furan (20) in the presence of BINOL phosphate (/ )-3q (2 mol%, R = S.S-MeSj-C Hj) to provide access to A-Boc-protected 2-furyl amines 21 in high yields (80-96%) and enantioselectivities (86-97% ee) [19]. [Pg.404]

In conjunction with their Friedel-Crafts alkylation, Terada et al. found phosphoric acid (R)-3m (2 mol%, R = 9-anthryl) bearing a bulky 9-anthryl group to mediate the asymmetric Friedel-Crafts-type reaction of a-diazoester 22a with iV-acylated aldimines 26 (Scheme 10). a-Diazo-P-amino esters 27 were obtained in moderate yields (62-89%) and very good enantioselectivities (91-97% ee) [20],... [Pg.405]

Moreover, phosphoric acid (5)-3r (5 mol%, R = SiPhj) bearing a bulky triphe-nylsilyl group turned out to be a suitable catalyst for the asymmetric Friedel-Crafts alkylation of iV-alkyl pyrroles 31 with M-benzoyl-protected aldimines 32 (Scheme 12) [23]. 2-Pyrrolyl amines 33 were obtained in high yields (66-97%) and moderate to high enantioselectivities (42 to >99% ee). [Pg.406]

Akiyama and coworkers extended the scope of electrophiles applicable to asymmetric Brpnsted acid catalysis with chiral phosphoric acids to nitroalkenes (Scheme 57). The Friedel-Crafts alkylation of indoles 29 with aromatic and aliphatic nitroalkenes 142 in the presence of BINOL phosphate (7 )-3r (10 mol%, R = SiPhj) and 3-A molecular sieves provided Friedel-Crafts adducts 143 in high yields and enantioselectivities (57 to >99%, 88-94% ee) [81]. The use of molecular sieves turned out to be critical and significantly improved both the yields and enantioselectivities. [Pg.440]

In the same year, Enders and coworkers reported an asymmetric one-pot, two-step synthesis of substituted isoindolines 159 in the presence of chiral A-triflyl phosphoramide (R)-Ae (10 mol%, R = d-NO -C H ) (Scheme 67) [87]. The cascade was triggered by a Brpnsted acid-catalyzed aza-Friedel-Crafts reaction of indoles 29 and A-tosyliminoenoates 160 followed by a DBU-mediated aza-Michael cyclization of intermediates 161 to afford the isoindolines 159 in high yields (71-99%) and short reaction times (10 min to 4 h) along with good enantioselectivities (52-90% ee). Longer reaction times (16 h to 10 days) caused increasing formation of the bisindole byproduct 162 (Scheme 68) along with amplified optical purity of isoindolines 159. [Pg.446]

In 2006, Xu and Xia et al. revealed the catalytic activity of commercially available D-camphorsulfonic acid (CS A) in the enantioselective Michael-type Friedel-Crafts addition of indoles 29 to chalcones 180 attaining moderate enantiomeric excess (75-96%, 0-37% ee) for the corresponding p-indolyl ketones 181 (Scheme 76) [95], This constitutes the first report on the stereoselectivity of o-CSA-mediated transformations. In the course of their studies, the authors discovered a synergistic effect between the ionic liquid BmimBr (l-butyl-3-methyl-l/f-imidazohum bromide) and d-CSA. For a range of indoles 29 and chalcone derivatives 180, the preformed BmimBr-CSA complex (24 mol%) gave improved asymmetric induction compared to d-CSA (5 mol%) alone, along with similar or slightly better yields of P-indolyl ketones 181 (74-96%, 13-58% ee). The authors attribute the beneficial effect of the BmimBr-D-CSA combination to the catalytic Lewis acid activation of Brpnsted acids (LBA). Notably, the direct addition of BmimBr to the reaction mixture of indole, chalcone, d-CSA in acetonitrile did not influence the catalytic efficiency. [Pg.453]

Ricci and co-workers introduced a new class of amino- alcohol- based thiourea derivatives, which were easily accessible in a one-step coupling reaction in nearly quanitative yield from the commercially available chiral amino alcohols and 3,5-bis(trifluoromethyl)phenyl isothiocyanate or isocyanate, respectively (Figure 6.45) [307]. The screening of (thio)urea derivatives 137-140 in the enantioselective Friedel-Crafts reaction of indole with trans-P-nitrostyrene at 20 °C in toluene demonstrated (lR,2S)-cis-l-amino-2-indanol-derived thiourea 139 to be the most active catalyst regarding conversion (95% conv./60h) as well as stereoinduction (35% ee), while the canditates 137, 138, and the urea derivative 140 displayed a lower accelerating effect and poorer asymmetric induction (Figure 6.45). The uncatalyzed reference reaction performed under otherwise identical conditions showed 17% conversion in 65 h reaction time. [Pg.288]

Figure 6.45 Hydroxy-flinctionalized thiourea derivatives (20mol% loading) screened in the enantioselective Friedel-Crafts reaction of indole with trons-P-nitrostyrene at 20°C in toluene. Figure 6.45 Hydroxy-flinctionalized thiourea derivatives (20mol% loading) screened in the enantioselective Friedel-Crafts reaction of indole with trons-P-nitrostyrene at 20°C in toluene.
Scheme 6.148 Product range of the enantioselective 139-catalyzed Friedel-Crafts alkylations of various indols. The product configurations were not determined. Scheme 6.148 Product range of the enantioselective 139-catalyzed Friedel-Crafts alkylations of various indols. The product configurations were not determined.
Fluoral hydrate and hemiacetals are industrial products. They are stable liquids that are easy to handle, and they react as fluoral itself in many reactions. Thus, in the presence of Lewis acids, they react in Friedel-Crafts reactions. They also react very well with organometallics (indium and zinc derivatives) and with silyl enol ethers.Proline-catalyzed direct asymmetric aldol reaction of fluoral ethyl hemiac-etal with ketones produced jS-hydroxy-jS-trifluoromethylated ketones with good to excellent diastereo- (up to 96% de) and enantioselectivities. With imine reagents, the reaction proceeds without Lewis acid activation. The use of chiral imines affords the corresponding 8-hydroxy ketones with a 60-80% de (Figure 2.49). ° ... [Pg.53]

Quallich and Woodall described the first asymmetric synthesis utilizing a catalytic enantioselective reduction of the ketoester 35 with (S)-terahydro-l-methyl-3,3-diphenyl-lH,3W-pyrrolo[l,2-c][l,3.2]oxazaborole (CBS) to give the desired hydroxyester 36 (90% ee). After mesylation, Sn2 displacement with a higher-order cuprate derived from copper cyanide gave the diaryl r-butyl ester 37 with good chirality transfer. Intramolecular Friedel-Crafts cyclization gave the tetralone 31 in 90% ee (Scheme 7). ... [Pg.135]

D-Camphorsulfonic acid (d-CSA) was identified as catalyst for the enantioselec-tive Michael-type Friedel-Crafts reactions of indoles with aromatic enones ArCH= CHCOAr to afford the corresponding /i-indolyl ketones in excellent yields and moderate enantioselectivities. A surprising synergistic effect was discovered between [Bmim] Br and d-CSA, which may originate from the catalytic Lewis acid activation of the Brpnsted acid.162... [Pg.349]

More recently, MacMillan has introduced the amine catalysts 42 and 45, readily available from L-phenylalanine, methylamine, and acetone or pivalaldehyde, respectively (Schemes 4.15 and 4.16). The broad potential of these materials in enan-tioselective organocatalysis was first proven in Diels-Alder reactions [28] and nitrone cydoadditions [29]. In 1,4-addition of C-nudeophiles MacMillan et al. later showed that Friedel-Crafts reactions of pyrroles with enals can be made highly enantioselective (Scheme 4.15) [30]. [Pg.58]

Enantioselective Friedel-Crafts Type Alkylation Reactions... [Pg.150]

Enantioselective Friedel-Crafts Type Alkylation Reactions 150 Marco Bandirti, Alfonso Melloni, and Fabio Piccinelli... [Pg.670]

The synthesis of the optically active chroman 489 can be achieved by use of a catalytic asymmetric tandem oxa-Michael addition Friedel-Crafts alkylation sequence between 3-methoxyphenol and (/. (-methyl 2-oxo-4-phenylbut-3-enoate. The chiral C2-symmetric box managanese(n)- complex 490 exerts excellent stereocontrol upon the reaction (Equation 200) <20030BC1953>, whereas only moderate enantioselectivity is observed in the presence of a chiral C2-symmetric 2,2 -bipyridyl copper(n)- complex (42% = ee) <20050L901>. [Pg.520]

Chiral bis-sulfonamides 162-163 are a new group of organo catalysts for the enantioselective Friedel-Crafts alkylation of indoles to nitroolefins. The hy-... [Pg.27]

As indicated from computational studies, the catalyst-activated iminium ion MM3-2 was expected to form with only the (E)-conformation to avoid nonbonding interactions between the substrate double bond and the gem-dimethyl substituents on the catalyst framework. In addition, the benzyl group of the imidazolidinone moiety should effectively shield the iminium-ion Si-face, leaving the Re-face exposed for enantioselective bond formation. The efficiency of chiral amine 1 in iminium catalysis was demonstrated by its successful application in several transformations such as enantioselective Diels-Alder reactions [6], nitrone additions [12], and Friedel-Crafts alkylations of pyrrole nucleophiles [13]. However, diminished reactivity was observed when indole and furan heteroaromatics where used for similar conjugate additions, causing the MacMillan group to embark upon studies to identify a more reactive and versatile amine catalyst. This led ultimately to the discovery of the second-generation imidazolidinone catalyst 3 (Fig. 3.1, bottom) [14],... [Pg.97]

The metal-catalyzed addition of aromatic substrates to a- or 7r-systems, also known as Friedel-Crafts alkylation, belongs to one of the most powerful strategies for the formation of C-C bonds [75-77]. Nevertheless, relatively few enantioselective catalytic approaches have been reported that use this reaction manifold, despite the widespread availability of electron-rich aromatics and the chemical relevance of the resulting products. [Pg.106]

The use of bifunctional thiourea-substituted cinchona alkaloid derivatives has continued to gamer interest, with the Deng laboratory reporting the use of a 6 -thiourea-substituted cinchona derivative for both the Mannich reactions of malo-nates with imines [136] and the Friedel-Crafts reactions of imines with indoles [137]. In both reports, a catalyst loading of 10-20 mol% provided the desired products in almost uniformly high yields and high enantioselectivities. Thiourea-substituted cinchona derivatives have also been used for the enantioselective aza-Henry reactions of aldimines [138] and the enantioselective Henry reactions of nitromethane with aromatic aldehydes [139]. [Pg.250]

The asymmetric syntheses of tetrahydroisoquinoline derivatives were also reported. Optically pure 3,4-disubstituted tetrahydroisoquinolines such as 78 were prepared by Friedel-Crafts cyclization of amino alcohols 77 <02TL1885>. Enantioselective syntheses of dihydropyrrolo[2,l-a]isoquinolines via a highly diastereoselective, chiral auxiliary assisted N-acyliminium cyclization was disclosed <02SL593>. The enantioselective synthesis (-)-tejedine, a seco-bisbenzyltetrahydroisoquinoline was also reported. One key step in this synthesis involved a chiral auxiliary-assisted diastereoselective Bischler-Napieralski cyclization <02OL2675>. Additionally, an asymmetric Bischler-Napieralski was reported for the preparation of 1,3,4-trisubstituted 1,2,3,4-tetrahydroisoquinolines <02JCS(P1)116>. [Pg.295]

Ouellet SG, Tuttle JB, MacMillan DWC (2005) Enantioselective organocatalytic hydride reduction. J Am Chem Soc 127 32-33 Paras NA, MacMillan DWC (2001) New strategies in organic catalysis the first enantioselective organocatalytic Friedel-Crafts alkylation. J Am Chem Soc... [Pg.42]


See other pages where Friedel enantioselectivity is mentioned: [Pg.61]    [Pg.156]    [Pg.358]    [Pg.136]    [Pg.320]    [Pg.296]    [Pg.365]    [Pg.365]    [Pg.444]    [Pg.451]    [Pg.198]    [Pg.270]    [Pg.289]    [Pg.289]    [Pg.150]    [Pg.21]    [Pg.106]    [Pg.107]    [Pg.201]    [Pg.224]    [Pg.544]   
See also in sourсe #XX -- [ Pg.441 ]




SEARCH



© 2024 chempedia.info