Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Friedel-Crafts catalyst groups

Weak Base Anion Exchangers. Both styreoic and acryHc copolymers can be converted to weak base anion-exchange resias, but differeat syathetic routes are aecessary. Styreae—DVB copolymers are chloromethylated and aminated ia a two-step process. Chloromethyl groups are attached to the aromatic rings (5) by reactioa of chloromethyl methyl ether [107-30-2] CH2OCH2CI, with the copolymer ia the preseace of a Friedel-Crafts catalyst such as aluminum chloride [7446-70-0], AlCl, iroa(III) chloride [7705-08-0], FeCl, or ziac chloride [7646-85-7], ZaCl. ... [Pg.374]

Ai lepiesents an aiyl group. Diaiyl products are obtained after long reaction times. Other Friedel-Crafts catalysts, eg, ZnCl2, FeCl2, FIF, and BF, can also be used. In most cases, stoichiometric amounts of the catalyst ate requited. Flowever, strong complexation of the phosphine by the catalyst necessitates separation by vacuum distillation, hydrolysis, or addition of reagents such as POCl to form more stable aluminum chloride complexes. Whereas yields up to 70—80% are possible for some aryl derivatives, yields of aliphatic derivatives are generally much less (19). [Pg.361]

MSC undergoes reactions with alcohols, amines, active methylene compounds (in the presence of bases), and aromatic hydrocarbons (in the presence of Friedel-Crafts catalysts) to replace, generally, a hydrogen atom by a methanesulfonyl group (382—401). [Pg.153]

A study of alkylations with a group of substituted benzyl halides and a range of Friedel-Crafts catalysts has provided insight into the trends in selectivity and orientation that accompany changes in both the alkyl group and the catalysts. There is a marked increase in substrate selectivity on going from / -nitrobenzyl chloride to /i-methoxybenzyl chloride. For example, with titanium tetrachloride as the catalyst, Aitoi Abenz increases from 2.5 to 97. This increase in substrate selectivity is accompanied by an increasing preference for para substitution. With /i-nitrobenzyl chloride, the ortho para ratio is 2 1 (the... [Pg.581]

The relative reactivity of Friedel-Crafts catalysts has not been described in a quantitative way, but comparative studies using a series of benzyl halides has resulted in the qualitative groupings shown in Table 11.1. Proper choice of catalyst can minimize subsequent product equilibrations. [Pg.1015]

The principles needed to design a polymer of low flammability are reasonably well understood and have been systematized by Van Krevelen (5). A number of methods have been found for modifying the structure of an inherently flammable polymer to make it respond better to conventional flame retardant systems. For example, extensive work by Pearce et al. at Polytechnic (38, 39) has demonstrated that incorporation of certain ring systems such as phthalide or fluorenone structures into a polymer can greatly increase char and thus flame resistance. Pearce, et al. also showed that increased char formation from polystyrene could be achieved by the introduction of chloromethyl groups on the aromatic rings, along with the addition of antimony oxide or zinc oxide to provide a latent Friedel-Crafts catalyst. [Pg.104]

In the presence of Friedel-Crafts catalysts, such as AICI3, the FCIO3 can be used for introducing a CIO3 group (perchlorylation) into an aromatic ring (144) ... [Pg.383]

The metal halide catalysts include aluminum chloride, aluminum bromide, ferric chloride, zinc chloride, stannic chloride, titanium tetrachloride and other halides of the group known as the Friedel-Crafts catalysts. Boron fluoride, a nonmetal halide, has an activity similar to that of aluminum chloride. [Pg.23]

Secondary R groups are harder to cleave, and primary R harder still. Because of this reaction, care must be taken when using Friedel-Crafts catalysts (Lewis or proton acids) on aromatic compounds containing alkyl groups. True cleavage, in which the R becomes an olefin, occurs only at high temperatures—above 400°C.425 At ordinary temperatures, the R group attacks... [Pg.561]

Disproportionation (transalkylation) and positional isomerization usually take place simultaneously when either linear or branched alkylbenzenes are treated with conventional Friedel-Crafts catalysts or with Nafion-H. The reactivity of alkyl groups to participate in transalkylation increases in the order ethyl, propyl < isopropyl < tert-butyl.117 207 217... [Pg.247]

Another important use of BC13 is as a Friedel-Crafts catalyst in various polymerization, alkylation, and acylation reactions, and in other organic syntheses (see Friedel-Crafts reaction). Examples include conversion of cydophosphazenes to polymers (81,82) polymerization of olefins such as ethylene (75,83—88) graft polymerization of vinyl chloride and isobutylene (89) stereospecific polymerization of propylene (90) copolymerization of isobutylene and styrene (91,92), and other unsaturated aromatics with maleic anhydride (93) polymerization of norbomene (94), butadiene (95) preparation of electrically conducting epoxy resins (96), and polymers containing B and N (97) and selective demethylation of methoxy groups ortho to OH groups (98). [Pg.224]

Although the coordinated cyclopentodienyl group resists nucleophilic attack, it does react with electrophiles. Ferrocene resembles free benzene in that it reacts with many electrophilic reagents, but it does so at an even faster rate than benzene. The aromatic character of ferrocene was recognized soon after the complex was identified and has led to a rich literature. Among the numerous reactions that have been studied is acylation in the presence of a Friedel-Crafts catalyst. [Pg.363]

The preparation and properties of the oxonium salts have been considered here in some detail because of their great importance in the polymerization of cyclic ethers by Friedel Crafts catalysts. From the point of view of this review the most important reactions of these salts are those with ethers and alcohols with ethers they exchange alkyl groups in an equilibrium process,... [Pg.21]

As films are used e.g. the polymerization product of ethylbenzene and divinylbenzene (33) the copolymer of styrene and butadiene (755) the copolymer of styrene and butadiene mixed with polyethylene (157) a vulcanized or cyclized copolymer of an aromatic vinylcompound and an aliphatic conjugated polyene (2). As a crack resisting matrix is mentioned the copolymer of styrene, divinylbenzene and butadiene with e.g. dioctylphthalate as a plasticizer (176). Other examples are the copolymers of unsaturated aromatic compounds and unsaturated aliphatic compounds (77) and the reaction products of polyolefines and partially polymerized styrene (174). Primary groups can be introduced also with the help of Friedel-Crafts catalyst. Ts. Kuwata and co-workers treated a film of a copolymer of styrene and butadiene with an aluminium-ether complex and ethylenedichloride (79). Afterwards they allowed the film to react with trimethylamine. Another technique is the grafting of e.g. a polyethylene film with styrene (28). [Pg.313]

Through the interaction of an alkylating agent, a hydrogen atom of the aromatic core, in the case of alkylation of arenes, is replaced by an alkyl group driven by a Friedel-Crafts catalyst. A variety of alkylating agents (e.g. alkyl halides, alcohols,... [Pg.183]

These catalytic reactions provide a unique pathway for addition of aromatic C-H bonds across C=C bonds. In contrast with Friedel-Crafts catalysts for olefin hydroarylation, the Ru-catalyzed hydrophenylation reactions of a-olefins selectively produce linear alkyl arenes rather than branched products. Although the selectivity is mild, the formation of anti-Markovnikov products is a unique feature of the Ru(II) and Ir(III) catalysts discussed herein. Typically, the preferred route for incorporation of long-chain linear alkyl groups into aromatic substrates is Friedel-Crafts acylation then Clemmensen reduction, and the catalysts described herein provide a more direct route to linear alkyl arenes. [Pg.180]

The alkylation of furans containing electron-withdrawing groups is possible with Friedel-Crafts catalysts. 2-Acetylfuran yields 2-acetyl-... [Pg.400]

The formation of the isomerized product was rationalized by the sequence of reactions shown in Fig. 27. A carbocation with a chlorosubstituent at the 4-position is formed by the reaction of the monomer with the Friedel-Crafts catalyst. Structural unit A is formed by the direct reaction of this carbocation with the aromatic ring of another monomer molecule (or polymer end group). Alternatively, an isomerization reaction can occur to produce a carbocation with the chlorosubstituent at the 7-position. Reaction of this carbocation with substrate leads to the formation of repeat unit B. [Pg.590]

Aromatic polyethers, including poly(ether sulfone)s and poly(ether ke-tone)s, have been synthesized by the Scholl reaction. In the Scholl reaction a Friedel-Crafts catalysts is used to effectuate the coupling of two aromatic groups to form an aryl-aryl bond, accompanied by the elimination of two aromatic hydrogens [Eq. (58)] [188-190]. This reaction proceeds under oxidative reaction conditions by a cation-radical mechanism [191,192]. [Pg.616]


See other pages where Friedel-Crafts catalyst groups is mentioned: [Pg.552]    [Pg.552]    [Pg.556]    [Pg.557]    [Pg.171]    [Pg.721]    [Pg.725]    [Pg.731]    [Pg.1048]    [Pg.331]    [Pg.146]    [Pg.325]    [Pg.83]    [Pg.452]    [Pg.550]    [Pg.821]    [Pg.130]    [Pg.224]    [Pg.70]    [Pg.224]    [Pg.562]    [Pg.804]    [Pg.266]    [Pg.717]    [Pg.735]    [Pg.743]    [Pg.749]   
See also in sourсe #XX -- [ Pg.17 ]




SEARCH



Catalysts Friedel Crafts

Friedel catalyst

Group 8 catalysts

© 2024 chempedia.info