Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Freezing point coefficient

We then lose some of the formal resemblance to Eq. 8.1 of ideal solutions, but on the other hand the use of (j) is advantageous in that it is much more sensitive to characterize the deviation from ideality than y,. The osmotic coefficient < > is, in fact, the same coefficient as what is called the boiling or freezing point coefficient. [Pg.72]

Sodium chloride, an ordinaiy salt (NaCT), is the least expensive per volume of any brine available. It can be used in contact with food and in open systems because of its low toxicity. Heat transfer coefficients are relatively high. However, its drawbacks are it has a relatively high freezing point and is highly corrosive (requires inhibitors thus must Be checked on a regular schedule). [Pg.1124]

As in the freezing-point method, the molecular weight is calculated from the weight of substance lequired to raise the boiling-point of too grams of solvent i°, and the result multiplied by a coefficient which depends upon the nature of the solvent. The following is a list of solvents commonly employed and their coefficients and boiling-points —... [Pg.40]

The changes in osmotic coefficients with temperature and concentration make it difficult to solve the above equations accurately, but accurate determinations of the composition and relative amounts of the concentrated liquid and ice can be made from phase diagrams which are plots of the freezing points of solutions versus their concentration. From these, it is possible to determine the exact NaCl concentration at any temperature. Examples are shown in Figure 9 for solutions of 0 to 2.0 M glycerol in 0.15 M NaCl. This figure nicely illustrates how the presence of glycerol reduces the concentration of NaCl in the residual unfrozen solution. [Pg.367]

When using any solvent extraction system, one of the most important decisions is the selection of the solvent to be used. The properties which should be considered when choosing the appropriate solvent are selectivity distribution coefficients insolubility recoverability density interfacial tension chemical reactivity viscosity vapour pressure freezing point safety and cost. A balance must be obtained between the efficiency of extraction (the yield), the stability of the additive under the extraction conditions, the (instrumental and analyst) time required and cost of the equipment. Once extracted the functionality is lost and... [Pg.53]

Similarly, concepts of solvation must be employed in the measurement of equilibrium quantities to explain some anomalies, primarily the salting-out effect. Addition of an electrolyte to an aqueous solution of a non-electrolyte results in transfer of part of the water to the hydration sheath of the ion, decreasing the amount of free solvent, and the solubility of the nonelectrolyte decreases. This effect depends, however, on the electrolyte selected. In addition, the activity coefficient values (obtained, for example, by measuring the freezing point) can indicate the magnitude of hydration numbers. Exchange of the open structure of pure water for the more compact structure of the hydration sheath is the cause of lower compressibility of the electrolyte solution compared to pure water and of lower apparent volumes of the ions in solution in comparison with their effective volumes in the crystals. Again, this method yields the overall hydration number. [Pg.33]

From a thermodynamic standpoint, freezing point measurements and isopiestic measurements are similar since both yield directly the activity of the solvent. When done carefully, freezing point data can generate activity coefficient values at concentrations down to 0.001 molal. During the first half of this century, much activity coefficient data was obtained from freezing point measurements. However, the popularity of this technique has decreased and is seldom used for aqueous solutions at the present time. [Pg.473]

Elaborate procedures have been developed for obtaining activity coefficients from freezing-point and thermochemical data. However, to avoid duplication, the details will not be outlined here, because a completely general discussion, which is applicable to solutions of electrolytes as well as to nonelectrolytes, is presented in Chapter 21 of the Third Edition of this book [6]. [Pg.401]

As we saw in Section 17.5, the activity coefficient of a nonelectrolyte solute can be calculated from the activity coefficient of the solvent, which, in turn, can be obtained from the measurement of colligative properties such as vapor pressure lowering, freezing point depression, or osmotic pressure. We used the Gibbs-Duhem equation in the form [Equation (17.33)]... [Pg.455]

It can be observed that g is the ratio between the observed osmotic pressure and the osmotic pressure that would be observed for a completely dissociated electrolyte that follows Henry s law [see Equation (15.47)], hence the name, osmotic coefficient. A similar result can be obtained for the boiling point elevation, the freezing point depression, and the vapor pressure lowering. [Pg.458]

A unitless correction factor that relates the relative activity of a substance to the quantity of the substance in a mixture. Activity coefficients are frequently determined by emf (electromotive force) or freezing-point depression measurements. At infinite dilution, the activity coefficient equals 1.00. Activity coefficients for electrolytes can vary significantly depending upon the concentration of the electrolyte. Activity coefficients can exceed values of 1.00. For example, a 4.0 molal HCl solution has a coefficient of 1.76 and a 4.0 molal Li Cl has a value of... [Pg.28]

ACTIVITY COEFFICIENT. A fractional number which when multiplied by the molar concentration of a substance in solution yields the chemical activity. This term provides an approximation of how much interaction exists between molecules at higher concentrations. Activity coefficients and activities are most commonly obtained from measurements of vapor-pressure lowering, freezing-point depression, boiling-point elevation, solubility, and electromotive force. In certain cases, activity coefficients can be estimated theoretically. As commonly used, activity is a relative quantity having unit value in some chosen standard state. Thus, the standard state of unit activity for water, dty, in aqueous solutions of potassium chloride is pure liquid water at one atmosphere pressure and the given temperature. The standard slate for the activity of a solute like potassium chloride is often so defined as to make the ratio of the activity to the concentration of solute approach unity as Ihe concentration decreases to zero. [Pg.29]

Activity coefficients of ions are determined using electromotive force, freezing point, and solubility measurements or are calculated using the theoretical equation of Debye and Htickel. [Pg.30]

In Equation 4.21, the activity of pure water (a) is unity and the activity of the water with the inhibitor (a ) is the product of the water concentration (xw) and the activity coefficient (xw). The water concentration is known and the activity coefficient is easily obtained from colligative properties for the inhibitor, such as the freezing point depression. For instance the activity of water in aqueous sodium chloride solutions may be obtained from Robinson and Stokes (1959, p. 476) or from any of several handbooks of chemistry and physics. [Pg.251]

This functional form is derived from exact results in the dilute vapor and hydrodynamic solvent limits. The coefficients A, B, C and D used in modeling high density fluids are determined uniquely from the equation of state of the corresponding hard sphere reference system (33,34)- This hard sphere fluid chemical potential model has been shown to accurately reproduce computer simulation results for both homonuclear and heteronuclear hard sphere diatomics in hard sphere fluids up to the freezing point density (35) ... [Pg.26]

An exothermal reaction is to be performed in the semi-batch mode at 80 °C in a 16 m3 water cooled stainless steel reactor with heat transfer coefficient U = 300 Wm"2 K . The reaction is known to be a bimolecular reaction of second order and follows the scheme A + B —> P. The industrial process intends to initially charge 15 000 kg of A into the reactor, which is heated to 80 °C. Then 3000 kg of B are fed at constant rate during 2 hours. This represents a stoichiometric excess of 10%.The reaction was performed under these conditions in a reaction calorimeter. The maximum heat release rate of 30Wkg 1 was reached after 45 minutes, then the measured power depleted to reach asymptotically zero after 8 hours. The reaction is exothermal with an energy of 250 kj kg-1 of final reaction mass. The specific heat capacity is 1.7kJ kg 1 K 1. After 1.8 hours the conversion is 62% and 65% at end of the feed time. The thermal stability of the final reaction mass imposes a maximum allowed temperature of 125 °C The boiling point of the reaction mass (MTT) is 180 °C, its freezing point is 50 °C. [Pg.176]

Equilibria among water ice, liquid water, and water vapor are critical for model development because these relations are fundamental to any cold aqueous model, and they can be used as a base for model parameterization. For example, given a freezing point depression (fpd) measurement for a specific solution, one can calculate directly the activity of liquid water (or osmotic coefficient) that can then be used as data to parameterize the model (Clegg and Brimblecombe 1995). These phase relations also allow one to estimate in a model the properties of one phase (e.g., gas) based on the calculated properties of another phase (e.g., aqueous), or to control one phase (e.g., aqueous) based on the known properties of another phase (e.g., gas). [Pg.24]

Example 4. The freezing point of a 20% by weight aqueous solution of ethanol is 10.92°C. What is the activity coefficient of water in this solution ... [Pg.268]


See other pages where Freezing point coefficient is mentioned: [Pg.1124]    [Pg.33]    [Pg.373]    [Pg.655]    [Pg.199]    [Pg.365]    [Pg.354]    [Pg.439]    [Pg.184]    [Pg.55]    [Pg.450]    [Pg.282]    [Pg.4]    [Pg.152]    [Pg.154]    [Pg.297]    [Pg.425]    [Pg.56]    [Pg.400]    [Pg.223]    [Pg.307]    [Pg.684]    [Pg.138]    [Pg.438]    [Pg.225]   
See also in sourсe #XX -- [ Pg.72 ]

See also in sourсe #XX -- [ Pg.313 ]




SEARCH



Coefficient, activity freezing point

Freeze point

Freezing point

Osmotic coefficient from freezing point

Point coefficient

© 2024 chempedia.info