Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Free fatty acid insulin effect

Insulin resistance occurs when the normal response to a given amount of insulin is reduced. Resistance of liver to the effects of insulin results in inadequate suppression of hepatic glucose production insulin resistance of skeletal muscle reduces the amount of glucose taken out of the circulation into skeletal muscle for storage and insulin resistance of adipose tissue results in impaired suppression of lipolysis and increased levels of free fatty acids. Therefore, insulin resistance is associated with a cluster of metabolic abnormalities including elevated blood glucose levels, abnormal blood lipid profile (dyslipidemia), hypertension, and increased expression of inflammatory markers (inflammation). Insulin resistance and this cluster of metabolic abnormalities is strongly associated with obesity, predominantly abdominal (visceral) obesity, and physical inactivity and increased risk for type 2 diabetes, cardiovascular and renal disease, as well as some forms of cancer. In addition to obesity, other situations in which insulin resistance occurs includes... [Pg.636]

In adipose tissue, the effect of the decrease in insulin and increase in glucagon results in inhibition of lipo-genesis, inactivation of lipoprotein lipase, and activation of hormone-sensitive lipase (Chapter 25). This leads to release of increased amounts of glycerol (a substrate for gluconeogenesis in the liver) and free fatty acids, which are used by skeletal muscle and liver as their preferred metabolic fuels, so sparing glucose. [Pg.234]

In adipose tissue, insulin stimulation suppresses triglyceride hydrolysis (to free fatty acids and glycerol) by activating cAMP phosphodiesterase (cAMP PDE). Cyclic AMP, (3, 5 cAMP), is required to stimulate hormone sensitive lipase (HSL), the enzyme which hydrolyses triglyceride within adipocytes PDE converts active 3, 5 cAMP to inactive 5 AMP thus preventing the stimulation of HSL. The net effect of insulin on lipid metabolism is to promote storage. [Pg.118]

Glucocorticoids not only break down protein but also stimulate the catabolism of lipids in adipose tissue and enhance the actions of other lipolytic agents. This occurrence results in an increase in plasma free fatty acids and an enhanced tendency to ketosis. The mechanism of this lipolytic action is unknown. The net effect of the biochemical changes induced by the glucocorticoids is antagonism of the actions of insulin. These biochemical events promote hyperglycemia and glycosuria, which are similar to the diabetic state. [Pg.689]

In a placebo-controlled study in six patients with type 2 diabetes mellitus thalidomide 150 mg/day for 3 weeks reduced insulin-stimulated glucose uptake by 31% and glycogen synthesis by 48% (1115). However, it had no effect on rates of glycolysis, carbohydrate oxidation, non-oxidative glycolysis, lipolysis, free fatty acid oxidation, or re-esterification. The authors concluded that thalidomide increases insulin resistance in obese patients with type 2 diabetes. [Pg.651]

Regulation The concentration of free fatty acids in the blood is controlled by the rate at which hormone-sensitive triacylglycerol lipase hydrolyzes the triacylglycerols stored in adipose tissue. Glucagon, epinephrine and norepinephrine cause an increase in the intracellular level of cAMP which allosterically activates cAMP-dependent protein kinase. The kinase in turn phosphorylates hormone-sensitive lipase, activating it, and leading to the release of fatty acids into the blood. Insulin has the opposite effect it decreases the level of cAMP which leads to the dephosphorylation and inactivation of hormone-sensitive lipase. [Pg.328]

Anesthetized rats are used for testing the side effect potential of a candidate compound on intermediary metabolism in liver, muscle and adipose tissue with subsequent effects on metabolic blood parameters (e.g. glucose, lactate, free fatty acids, triglycerides) and insulin. The use of anesthetized rats represents more a principal assessment of the pharmacological side effect potential since the candidate compound must be administered intravenously or intraperitoneally (enteral/intestinal administration should be avoided due to the anesthesia-induced decrease in intestinal motility with subsequent impairment of enteral absorption), compared to the study in conscious rats in which the candidate compound can be studied after oral administration, which in most cases represents the clinical route of administration for small molecular drugs. [Pg.178]

Conscious rats are used for testing the side effect potential of a candidate compound on intermediary metabolism in liver, muscle and adipose tissue with subsequent effects on metabolic blood parameters (e.g. glucose, lactate, free fatty acids, triglycerides) and insulin after oral administration, which represents in most cases the clinical route of administration for small molecular drugs. [Pg.179]

For the safety pharmacological assessment of candidate compounds to increase or reduce insulin resistance often long-term pre-treatment periods for 1 week or longer are necessary before an effect on insulin sensitivity can be detected. Candidate compounds causing an acute effect on lipolysis or andlipolysis of adipose tissue with subsequent changes in free fatty acids normally causes also a fast effect on peripheral insulin sensitivity, which can be measured after a relatively short (16h) pre-treatment period (Schoelch et al. 2004). [Pg.184]

In the ob/ob mouse, the KK mouse and the Zucker rat, CS-045 reduces the levels of blood glucose, insulin, triglycerides, lactate, and free fatty acids, while in the normal rat and the streptozotocin-diabetic rat, no effect on blood glucose is observed. The effect on blood glucose in KK mice can be observed after a single 50 mg/kg dose within 2.5 hours and lasts as long as... [Pg.19]


See other pages where Free fatty acid insulin effect is mentioned: [Pg.342]    [Pg.120]    [Pg.700]    [Pg.758]    [Pg.161]    [Pg.179]    [Pg.215]    [Pg.235]    [Pg.138]    [Pg.96]    [Pg.122]    [Pg.78]    [Pg.56]    [Pg.120]    [Pg.124]    [Pg.765]    [Pg.246]    [Pg.185]    [Pg.808]    [Pg.342]    [Pg.5]    [Pg.606]    [Pg.635]    [Pg.651]    [Pg.43]    [Pg.185]    [Pg.190]    [Pg.201]    [Pg.421]    [Pg.177]    [Pg.178]    [Pg.179]    [Pg.180]    [Pg.185]    [Pg.673]    [Pg.120]    [Pg.700]    [Pg.758]    [Pg.929]    [Pg.555]   
See also in sourсe #XX -- [ Pg.254 ]




SEARCH



Fatty acid effects

Free fatty acids

Insulin, effects

© 2024 chempedia.info