Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fractions, chemical properties

Although isotopes have similar chemical properties, their slight difference in mass causes slight differences in physical properties. Use of this is made in isotopic separation pro cesses using techniques such as fractional distillation, exchange reactions, diffusion, electrolysis and electromagnetic methods. [Pg.228]

There is a large volume of contemporary literature dealing with the structure and chemical properties of species adsorbed at the solid-solution interface, making use of various spectroscopic and laser excitation techniques. Much of it is phenomenologically oriented and does not contribute in any clear way to the surface chemistry of the system included are many studies aimed at the eventual achievement of solar energy conversion. What follows here is a summary of a small fraction of this literature, consisting of references which are representative and which also yield some specific information about the adsorbed state. [Pg.418]

Separation Processes. The product of ore digestion contains the rare earths in the same ratio as that in which they were originally present in the ore, with few exceptions, because of the similarity in chemical properties. The various processes for separating individual rare earth from naturally occurring rare-earth mixtures essentially utilize small differences in acidity resulting from the decrease in ionic radius from lanthanum to lutetium. The acidity differences influence the solubiUties of salts, the hydrolysis of cations, and the formation of complex species so as to allow separation by fractional crystallization, fractional precipitation, ion exchange, and solvent extraction. In addition, the existence of tetravalent and divalent species for cerium and europium, respectively, is useful because the chemical behavior of these ions is markedly different from that of the trivalent species. [Pg.543]

Chemical Properties and Reactivity. LLDPE is a saturated branched hydrocarbon. The most reactive parts of LLDPE molecules are the tertiary CH bonds in branches and the double bonds at chain ends. Although LLDPE is nonreactive with both inorganic and organic acids, it can form sulfo-compounds in concentrated solutions of H2SO4 (>70%) at elevated temperatures and can also be nitrated with concentrated HNO. LLDPE is also stable in alkaline and salt solutions. At room temperature, LLDPE resins are not soluble in any known solvent (except for those fractions with the highest branching contents) at temperatures above 80—100°C, however, the resins can be dissolved in various aromatic, aUphatic, and halogenated hydrocarbons such as xylenes, tetralin, decalin, and chlorobenzenes. [Pg.395]

The isomeric mixture is a colodess, mobile Hquid with a sweet, slightly irritating odor resembling that of chloroform. It decomposes slowly on exposure to light, air, and moisture. The mixture is soluble ia most hydrocarbons and only slightly soluble ia water. The cis—trans proportions ia a cmde mixture depend on the production conditions. The isomers have distinct physical and chemical properties and can be separated by fractional distillation. [Pg.19]

Step 4 deals with physical and chemical properties of compounds and mixtures. Accurate physical and chemical properties ate essential to achieve accurate simulation results. Most simulators have a method of maintaining tables of these properties as well as computet routines for calculations for the properties by different methods. At times these features of simulators make them suitable or not suitable for a particular problem. The various simulators differ ia the number of compounds ia the data base number of methods for estimating unknown properties petroleum fractions characterized electrolyte properties handled biochemical materials present abiUty to handle polymers and other complex materials and the soflds, metals, and alloys handled. [Pg.73]

Engineering factors include (a) contaminant characteristics such as physical and chemical properties - concentration, particulate shape, size distribution, chemical reactivity, corrosivity, abrasiveness, and toxicity (b) gas stream characteristics such as volume flow rate, dust loading, temperature, pressure, humidity, composition, viscosity, density, reactivity, combustibility, corrosivity, and toxicity and (c) design and performance characteristics of the control system such as pressure drop, reliability, dependability, compliance with utility and maintenance requirements, and temperature limitations, as well as size, weight, and fractional efficiency curves for particulates and mass transfer or contaminant destruction capability for gases or vapors. [Pg.22]

In 1899 Thoms isolated an alcohol from Peru balsam oil, which he termed peruviol. This body was stated to have powerful antiseptic properties, but has not been further investigated until Schimmel Co. took up the subject. The oil after saponification was fractionated, and after benzyl alcohol had distilled over, a light oil with characteristic balsamic odour passed over. It boiled at 125° to 127° at 4 mm., and had a specific gravity 0 8987, optical rotation -1- 12° 22, and refractive index 1-48982. This body appeared to be identical with Hesse s nerolidol, whilst in physical and chemical properties it closely resembles peruviol. The characters of the various preparations were as follows —... [Pg.125]

The chloroaluminate(III) ionic liquids - [EMIM][C1-A1C13], for example (where EMIM is l-ethyl-3-methylimidazolium) - are liquid over a wide range of AICI3 concentrations [24]. The quantity of AICI3 present in the ionic liquid determines the physical and chemical properties of the liquid. When the mole fraction, X(A1C13), is below 0.5, the liquids are referred to as basic. When X(A1C13) is above 0.5, the liquids are referred to as acidic, and at an X(A1C13) of exactly 0.5 they are referred to as neutral. [Pg.320]

Paraffins are relatively inactive compared to olefins, diolefins, and aromatics. Few chemicals could be obtained from the direct reaction of paraffins with other reagents. However, these compounds are the precursors for olefins through cracking processes. The C -Cg paraffins and cycloparaffms are especially important for the production of aromatics through reforming. This section reviews some of the physical and chemical properties of C1-C4 paraffins. Long-chain paraffins normally present as mixtures with other hydrocarbon types in different petroleum fractions are discussed later in this chapter. [Pg.29]

Knowledge of the chemical properties of the U-series nuclides is essential to any understanding of fractionation within the U-series chains. The nuclides of particular... [Pg.12]

Influence of U colloidal transport in organic-poor surface waters has been far less studied. Riotte et al. (2003) reported U losses from 0 to 70% during ultrafiltration experiments for surface waters of Mount Cameroon without nearly any DOC. Even in the low concentration waters, U can be significantly fractionated from other soluble elements by the occurrence of a colloidal phase, probably inorganic in origin. However, such fractionations are not systematic because of the occurrence of various colloidal phases, characterised by different physical and chemical properties, and hence different sorption and/or complexation capacities (Section 2.1). [Pg.554]

Chemical potentials for the constituents of minerals are defined in a similar manner. All minerals contain substitutional impurities that affect their chemical properties. Impurities range from trace substitutions, as might be found in quartz, to widely varying fractions of the end-members of solid solutions series. Solid solutions of geologic significance include clay minerals, zeolites, and plagioclase feldspars, which are important components in most geochemical models. [Pg.34]

The EEM fluorescence allows identifying major differences in fluorescent properties between fractions. However, the EEM fluorescence spectroscopy may become very time-consuming. For quick preliminary analysis, it is recommended that synchronous fluorescence spectra be used for distinguishing samples of DOM with different chemical properties. [Pg.308]


See other pages where Fractions, chemical properties is mentioned: [Pg.453]    [Pg.394]    [Pg.443]    [Pg.444]    [Pg.220]    [Pg.206]    [Pg.117]    [Pg.88]    [Pg.705]    [Pg.507]    [Pg.745]    [Pg.396]    [Pg.147]    [Pg.679]    [Pg.87]    [Pg.370]    [Pg.386]    [Pg.9]    [Pg.49]    [Pg.534]    [Pg.241]    [Pg.301]    [Pg.449]    [Pg.206]    [Pg.366]    [Pg.33]    [Pg.150]    [Pg.156]    [Pg.27]    [Pg.270]    [Pg.1456]    [Pg.168]    [Pg.59]    [Pg.238]    [Pg.1]   


SEARCH



Chemical fractionation

Chemical fractions

Fractional properties

Fractions, chemical properties isolated

© 2024 chempedia.info