Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Formation of five membered

This polymerization is carried out in the two stages indicated above precisely because of the insolubility and infusibility of the final product. The first-stage polyamide, structure [IX], is prepared in polar solvents and at relatively low temperatures, say, 70°C or less. The intermediate is then introduced to the intended application-for example, a coating or lamination-then the second-stage cyclization is carried out at temperatures in the range 150-300°C. Note the formation of five-membered rings in the formation of the polyimide, structure [X], and also that the proportion of acid to amine groups is 2 1 for reaction (5.II). [Pg.335]

As shown in Scheme 2, two heteroatom-carbon bonds are constructed in such a way that one component provides both heteroatoms for the resultant heterocycle. By variation of X and Z entry is readily obtained into thiazoles, oxazoles, imidazoles, etc. and by the use of the appropriate oxidation level in the carbonyl-containing component, further oxidized derivatives of these ring systems result. These processes are analogous to those utilized in the formation of five-membered heterocycles containing one heteroatom, involving cyclocondensation utilizing enols, enamines, etc. [Pg.118]

Formation of five-membered ring systems (1,2-addition) can compete with formation of the seven-membered heterocycles (1,4-addition). If the first step of the reaction sequence, namely the nucleophilic attack of the terminal heteroatoin of the diene, is hindered by steric or electronic effects, the five-membered ring product is formed exclusively. [Pg.874]

Treatment of hexafluoroacetone with a P(lll) species results either in formation of five membered ring systems via reductive CC coupling of two molecules of hexafluoroacetone [275, 276 277, 278, 279 280, 281] (equation 60) or in reductive fluoride elimination [282] (equation 61)... [Pg.876]

Arguing that the MNDO method is more suitable than the AMI method for predicting the heats of formation of five-membered nitrogenated aromatic rings, Garcia and Vilarrasa (88H1803) calculated that 4-fluoroimidazole 14a (R = F, = H) is 2.5 kJ mol more stable than its tautomer 14b,... [Pg.179]

Formation of five-member N,S- and N-heterocycles by sigmatropic rearrangements of functionalized allenes 97FA2005. [Pg.245]

The cyclization of o-halogenobenzoic acids with copper acetylides mainly leads to the formation of five-membered lactones (66JOC4071 69JA6464) (Scheme 115). Only in the case of the reaction of o-iodobenzoic with CuC=C—n-C3H7 does the formation of a mixture of y- and 5-lactones occur (Scheme 116). [Pg.56]

This tendency is especially significant in compounds containing functional groups capable of addition with the formation of both five- and six-membered rings. It has been shown that for amides and hydrazides of azolecarboxylic acids, selectively, and for the acids with any arrangement of a function and triple bond, heterocyclization always leads to the closure of the six-membered ring. Similar reactions in the benzoic series mainly lead to the formation of five-membered rings. [Pg.69]

With certain substituents, such as methoxy150 or (substituted) phenyl53 functions, in the allylie position the reaction outcome completely changes, giving rise to predominant or exclusive formation of five-membered ring products via a preceding 2-aza-Cope rearrangement of the initially formed A -acyliminium ion. These substituents clearly stabilize the intermediary carbo-cation 3. [Pg.845]

In the same way as arylcarbene complexes, alkenylcarbene complexes typically react with alkynes to provide [3C+2S+1C0] Dotz cycloadducts (see Chap. ccChromium-Templated Benzannulation Reactions , p. 123 in this book). However, some isolated examples involving the formation of five-membered rings through [3C+2S] cycloaddition processes have been reported [71]. In this context, de Meijere et al. found that /J-donor-substituted alkenylcarbene complexes react with alkynes to give cyclopentene derivatives [71a]. This topic is also discussed in detail in Chap.ccThe Multifaceted Chemistry of Variously Substituted a,/J-Unsaturated Fischer Metalcarbenes , p. 21 of this book. [Pg.78]

The most useful of the insertion processes is the intramolecular reactions that occur with high selectivity for the formation of five-membered ring products. The electrophilic nature of the process is suggested by C-H bond reactivity in competitive experiments (3°>20 >1°) [76, 77]. Asymmetric catalysis with Rh2(MPPIM)4 has been used to prepare a wide variety of lignans that include (-)-enterolactone (3) [8], as well as (R)-(-)-baclofen (2) [7],2-deoxyxylolactone (31) [80,81],and (S)-(+)-imperanane (32) [82].Enantioselectivities are 91-96%... [Pg.214]

Dipolar [3 + 2] cycloadditions are one of the most important reactions for the formation of five-membered rings [68]. The 1,3-dipolar cycloaddition reaction is frequently utihzed to obtain highly substituted pyrroHdines starting from imines and alkenes. Imines 98, obtained from a-amino esters and nitroalkenes 99, are mixed together in an open vessel microwave reactor to undergo 1,3-dipolar cycloaddition to produce highly substituted nitroprolines esters 101 (Scheme 35) [69]. Imines derived from a-aminoesters are thermally isomerized by microwave irradiation to azomethine yhdes 100,... [Pg.232]

The aldol reaction can be applied to dicarbonyl compounds in which the two groups are favorably disposed for intramolecular reaction. Kinetic studies on cyclization of 5-oxohexanal, 2,5-hexanedione, and 2,6-heptanedione indicate that formation of five-membered rings is thermodynamically somewhat more favorable than formation of six-membered rings, but that the latter is several thousand times faster.170 A catalytic amount of acid or base is frequently satisfactory for formation of five- and six-membered rings, but with more complex structures, the techniques required for directed aldol condensations are used. [Pg.134]

Scheme 2.10 illustrates intramolecular aldol condensations. Entries 1 and 2 are cases of formation of five-membered rings, with aldehyde groups serving as the electrophilic center. The regioselectivity in Entry 1 is due to the potential for dehydration of only one of the cyclic aldol adducts. [Pg.134]

Intramolecular insertion reactions show a strong preference for formation of five-membered rings.219 This was seen in a series of a-diazomethyl ketones of increasing chain length. With only one exception, all of the products were five-membered lactones.220 In the case of n = 3, the cyclization occurs in the side chain, again forming a five-membered ring. [Pg.938]

In a reaction similar to the (>-alkoxide elimination reactions seen with zir-conocenes, catalytic Rh(OH)(cod)2 and 2 eq. of arylboronic acids gave cyclic products 165 from enynes 166 (Scheme 35) [100]. In this reaction, transmet-allation of Rh - OR with B - Ph gave Rh - Ph species 167, which inserted into the alkyne, cyclized to 168, and finally underwent [>-alkoxidc elimination to provide Rh-OCH3. This reaction is limited to the formation of five-membered rings, but it can also undergo cascade type reactions of enediynes to give multicyclic products [100]. [Pg.251]

Low valent transition metal centers preferentially coordinate to the phosphorus in diazaphospholes. Accordingly, P-coordinated complexes of [l,2,3]diazapho-spholes with Cr, W, Fe, and Mn carbonyls were obtained as early as 1980 [1, 2,4], Later, Kraaijkamp et al. observed [108] both P- or -coordination modes in complexes of [l,2,3]diazaphospholes with MX2(PEt3) (M = Pt, Pd X = C1, Br). Methanolysis of these complexes led to the diazaphosphole ring opening and formation of five membered metallacyclic P,/V-chelates (103), incorporating P-bonded phosphonite and /V-coordinated hydrazone functionalities (Scheme 32) [109],... [Pg.198]

Formation of five-membered rings onto central pyridine core... [Pg.725]

Not only the formation of these insertion by-products but also the ring-formation described in Section Hf (see also Table 6) proved that the activation of the a C-H bond by a vicinal negative charge for the carbene insertion is more effective than the non-ionic as well as entropy-controlled formation of five-membered rings. [Pg.312]

The formation of five-membered cyclic nitronates (404) is explained in terms of ring-chain tautomerism of cationic intermediates A (A=A ). The presence of the alkoxy substituent (R4) at the C-6 atom could stabilize the open form (cation A7), which finally leads to the formation of functionalized five-membered cyclic nitronates (404) probably with the participation of water. [Pg.652]

It is surprising that the quintet state for iron(II) is appreciably populated in the derivatives of the amidine system 65 (Dq(Ni2+)=1170 cm-1), despite the absence, in this instance, of any apparent steric barrier to coordination from substituents and the formation of five-membered chelate rings. [Pg.98]

Addition of excess /-butyl isocyanide, CO2, or CyNCO resulted in the formation of five-membered ring chelate compounds 107, the metal-bound imino acid 108, and the metal-bound imino amide 109, respectively, as shown in Scheme 47.170... [Pg.426]

Another possible termination step that has been utilized for the cycloetherification of alkynols involves CO insertion and esterification of the resulting acyl metal with an exogenous alcohol. This process has typically employed MeOH as solvent and a stoichiometric oxidant since the catalyst is turned over in a reduced form. Following this mechanistic motif, a variety of alkynols have been cyclized under Pd(n) catalysis to five- and six-membered oxacycles with incorporation of methyl esters into the products.294,327-329 For the formation of five-membered ring products, this reaction has been carried out in both exo- and endo-mode to provide 1- and 2-substituted... [Pg.675]

Dipolar addition is closely related to the Diels-Alder reaction, but allows the formation of five-membered adducts, including cyclopentane derivatives. Like Diels-Alder reactions, 1,3-dipolar cycloaddition involves [4+2] concerted reaction of a 1,3-dipolar species (the An component and a dipolar In component). Very often, condensation of chiral acrylates with nitrile oxides or nitrones gives only modest diastereoselectivity.82 1,3-Dipolar cycloaddition between nitrones and alkenes is most useful and convenient for the preparation of iso-xazolidine derivatives, which can then be readily converted to 1,3-amino alcohol equivalents under mild conditions.83 The low selectivity of the 1,3-dipolar reaction can be overcome to some extent by introducing a chiral auxiliary to the substrate. As shown in Scheme 5-51, the reaction of 169 with acryloyl chloride connects the chiral sultam to the acrylic acid substrate, and subsequent cycloaddition yields product 170 with a diastereoselectivity of 90 10.84... [Pg.308]

A few other interesting and potentially important consequences of the reversible formation of five-membered zirconacycles include stereo- and regioselective skeletal rearrangement, as exemplified by Scheme 1.57 [197], and 1,3-C=C bond and Zr migration (Scheme 1.58) [191,192], supporting the associative mechanism for alkene displacement (Generalization 22 ). [Pg.36]

Vinyllithium cyclizations. The vinyl lithiums formed from trisylhydrazones (9, 486) can participate in intramolecular cyclizations. This anionic cyclization is presently limited to formation of five-membered rings. It has the advantage of greater stereoselectivity than a corresponding radical cyclization. [Pg.327]


See other pages where Formation of five membered is mentioned: [Pg.169]    [Pg.691]    [Pg.859]    [Pg.29]    [Pg.1012]    [Pg.103]    [Pg.319]    [Pg.240]    [Pg.235]    [Pg.1037]    [Pg.1050]    [Pg.1050]    [Pg.458]    [Pg.176]    [Pg.305]    [Pg.168]    [Pg.168]    [Pg.201]    [Pg.32]    [Pg.186]    [Pg.128]    [Pg.114]   


SEARCH



Formation of Five-Membered Cycles

Formation of Five-Membered Rings

Formation of Five-Membered Rings Intramolecular

Formation of Five-membered Nitrogen Heterocycles

Formation of five membered heterocycles

Formation of five-membered rings - 1,3-dipolar cycloaddition reactions

Membered formation

© 2024 chempedia.info