Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrazones, 1-functionalized

Low valent transition metal centers preferentially coordinate to the phosphorus in diazaphospholes. Accordingly, P-coordinated complexes of [l,2,3]diazapho-spholes with Cr, W, Fe, and Mn carbonyls were obtained as early as 1980 [1, 2,4], Later, Kraaijkamp et al. observed [108] both P- or -coordination modes in complexes of [l,2,3]diazaphospholes with MX2(PEt3) (M = Pt, Pd X = C1, Br). Methanolysis of these complexes led to the diazaphosphole ring opening and formation of five membered metallacyclic P,/V-chelates (103), incorporating P-bonded phosphonite and /V-coordinated hydrazone functionalities (Scheme 32) [109],... [Pg.198]

Silylation of benzyl C-H bonds using hydrosilanes can also be performed with the aid of Ru3(CO)12-catalyst (Table 1) [9]. This silylation occurs only at benzylic CH3 groups. Pyridine, pyrazole, and hydrazones function as good directing groups. Benzylamines, oxime ethers, dimethylanilides, and aryl pyridyl ethers have no activity in this silylation. [Pg.135]

The amino acid analysis of the pooled peptides with hydrazone functions was determined. The number of moles of aspartic acid and hydrazone present were approximately equal, whereas the number of moles of glutamic acid was much lower. This indicates that the bound hydrazone... [Pg.159]

Annulation of a nuclear amino group with a side-chain hydrazone function [as in (51.2)] proceeds in moderate yield on heating the compound with sodium acetate-acetic acid for 10-20 h under anhydrous conditions. Ethoxymethylene-malonates also convert imino- -amines into triazoles with a similar loss of carboxyl-derived functions. [Pg.319]

In Summary One equivalent of phenylhydrazine converts a sugar into the corresponding phenylhydrazone. Additional hydrazine reagent causes oxidation of the center adjacent to the hydrazone function to furnish the osazone. [Pg.1089]

Inspired by the work of Burk and Feaster ) we attempted to use (2-pyridyl)hydrazine (4.36) as a coordinating auxiliary (Scheme 4.10). Hydrazines generally react effidently with ketones and aldehydes. Hence, if satisfactory activation of the dienophile can be achieved through coordination of a Lewis acid to the (2-pyridyl)hydrazone moiety in water. Lewis-add catalysis of a large class of ketone- and aldehyde-activated dienophiles is antidpated Subsequent conversion of the hydrazone group into an amine functionality has been reported previously by Burk and Feaster ... [Pg.113]

The product composition from these reactions is influenced by the location of the functional group in the substrate. Olefin formation is the most common side reaction and in certain cases, especially with reductions of tosyl-hydrazones (section IV-B), it may become dominant so that the reaction can be used for the preparation of mono-labeled olefins. [Pg.171]

Nickel peroxide is a solid, insoluble oxidant prepared by reaction of nickel (II) salts with hypochlorite or ozone in aqueous alkaline solution. This reagent when used in nonpolar medium is similar to, but more reactive than, activated manganese dioxide in selectively oxidizing allylic or acetylenic alcohols. It also reacts rapidly with amines, phenols, hydrazones and sulfides so that selective oxidation of allylic alcohols in the presence of these functionalities may not be possible. In basic media the oxidizing power of nickel peroxide is increased and saturated primary alcohols can be oxidized directly to carboxylic acids. In the presence of ammonia at —20°, primary allylic alcohols give amides while at elevated temperatures nitriles are formed. At elevated temperatures efficient cleavage of a-glycols, a-ketols... [Pg.248]

Preparation of thiadiazoles via the Hurd-Mori cyclization has led to the synthesis of a variety of biologically active and functionally useful compounds. Discussion of reactions prior to 1998 on the preparation of thiadiazoles have been compiled in a review by Stanetty et al Recent syntheses of thiadiazoles as intermediates for useful transformations to other heterocycles have appeared. For example, the thiadiazole intermediate 36 was prepared from the hydrazone 35 and converted to benzofuran upon treatment with base. Similarly, the thiadiazole acid chloride 38 was converted to the hydrazine 39 which, upon base treatment, provided the pyrazolone, which can be sequentially alkylated in situ to provide the product 40. ... [Pg.287]

In the discussion of benzylamines, we have met medicinal agents that owe their activity to some particular functionality almost without reference to the structure of the rest of the molecule. The hydrazine group is one such function in that it frequently confers monamine oxidase-inhibiting activity to molecules containing that group. Such agents frequently find use as antidepressants. Thus, reduction of the hydrazone of phenyl-acetaldehyde (84) affords the antidepressant phenelzine (85). Similar treatment of the derivative of phenylacetone (86) gives pheniprazine (87). ... [Pg.74]

Reaction of 2,3-dichlorobenzoyl chloride with cyanide ion leads to the corresponding benzoyl cyanide (141). Condensation of that reactive intermediate with aminoguanidine 142 leads to the hydrazone-like product 143. Treatment with base results in addition of one of the guanidine amino groups to the nitrile function and formation of the 1,2,4-triazine ring. The product, lamo-trigine (144), is described as an anticonvulsant agent [31]. [Pg.120]

Reductive alkylations have been carried out successfully with compounds that are not carbonyls or amines, but which are transformed during the hydrogenation to suitable functions. Azides, azo, hydrazo, nitro and nitroso compounds, oximes, pyridines, and hydroxylamines serve as amines phenols, acetals, ketals, or hydrazones serve as carbonyls 6,7,8,9,12,17,24,41,42,58). Alkylations using masked functions have been successful at times when use of unmasked functions have failed (2). In a synthesis leading to methoxatin, a key... [Pg.88]

Step involved a ring closure between a hydrazone and a nitro function (23). [Pg.89]

Removal of the carbonate ring from 7 (Scheme 1) and further functional group manipulations lead to allylic alcohol 8 which can be dissected, as shown, via a retro-Shapiro reaction to give vinyl-lithium 9 and aldehyde 10 as precursors. Vinyllithium 9 can be derived from sulfonyl hydrazone 11, which in turn can be traced back to unsaturated compounds 13 and 14 via a retro-Diels-Alder reaction. In keeping with the Diels-Alder theme, the cyclohexene aldehyde 10 can be traced to compounds 16 and 17 via sequential retrosynthetic manipulations which defined compounds 12 and 15 as possible key intermediates. In both Diels-Alder reactions, the regiochemical outcome is important, and special considerations had to be taken into account for the desired outcome to. prevail. These and other regio- and stereochemical issues will be discussed in more detail in the following section. [Pg.660]

The aldehyde or ketone functionalities in the Michael adducts are restored by ozonolysis of the hydrazone moiety resulting in am/-3,4-disubstituted-5-oxoalkanoates 1. [Pg.960]

An excellent synthetic method for asymmetric C—C-bond formation which gives consistently high enantioselectivity has been developed using azaenolates based on chiral hydrazones. (S)-or (/ )-2-(methoxymethyl)-1 -pyrrolidinamine (SAMP or RAMP) are chiral hydrazines, easily prepared from proline, which on reaction with various aldehydes and ketones yield optically active hydrazones. After the asymmetric 1,4-addition to a Michael acceptor, the chiral auxiliary is removed by ozonolysis to restore the ketone or aldehyde functionality. The enolates are normally prepared by deprotonation with lithium diisopropylamide. [Pg.975]

Simple 1,2,4-triazole derivatives played a key role in both the synthesis of functionalized triazoles and in asymmetric synthesis. l-(a-Aminomethyl)-1,2,4-triazoles 4 could be converted into 5 by treatment with enol ethers <96SC357>. The novel C2-symmetric triazole-containing chiral auxiliary (S,S)-4-amino-3,5-bis(l-hydroxyethyl)-l,2,4-triazole, SAT, (6) was prepared firmn (S)-lactic acid and hydrazine hydrate <96TA1621>. This chiral auxiliary was employed to mediate the diastereoselective 1,2-addition of Grignard reagents to the C=N bond of hydrazones. The diastereoselective-alkylation of enolates derived from ethyl ester 7 was mediated by a related auxiliary <96TA1631>. [Pg.162]


See other pages where Hydrazones, 1-functionalized is mentioned: [Pg.75]    [Pg.91]    [Pg.231]    [Pg.429]    [Pg.245]    [Pg.250]    [Pg.75]    [Pg.75]    [Pg.1439]    [Pg.73]    [Pg.823]    [Pg.824]    [Pg.1439]    [Pg.160]    [Pg.565]    [Pg.75]    [Pg.187]    [Pg.64]    [Pg.91]    [Pg.196]    [Pg.93]    [Pg.92]    [Pg.83]    [Pg.114]    [Pg.246]    [Pg.700]    [Pg.39]    [Pg.99]    [Pg.145]    [Pg.490]    [Pg.664]    [Pg.97]    [Pg.3]   


SEARCH



© 2024 chempedia.info