Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Formate reductase

Enzyme activities of (7 )-2-hydroxy carboxylate viologen oxidoreductase (HVOR), dimethyl-sulphoxide reductase, formate reductase and hydro-genase in crude extracts of P. vulgaris and P. mirabilis (47). [Pg.861]

Biosynthesis of Tea Flavonoids. The pathways for the de novo biosynthesis of flavonoids in both soft and woody plants (Pigs. 3 and 4) have been generally elucidated and reviewed in detail (32,51). The regulation and control of these pathways in tea and the nature of the enzymes involved in synthesis in tea have not been studied exhaustively. The key enzymes thought to be involved in the biosynthesis of tea flavonoids are 5-dehydroshikimate reductase (52), phenylalanine ammonia lyase (53), and those associated with the shikimate/arogenate pathway (52). At least 13 enzymes catalyze the formation of plant flavonoids (Table 4). [Pg.368]

En2ymatic reduction of folic acid leads to the 7,8-dihydrofolic acid (H2 folate) (2), a key substance in biosynthesis. Further reduction, cataly2ed by the en2yme dihydrofohc acid reductase, provides (65)-5,6,7,8-tetrahydrofohc acid (H folate) (3). The folate (3) is the key biological intermediate for the formation of other folates (4—8) (Table 2). [Pg.37]

Product formation kinetics in mammalian cells has been studied extensively for hybridomas. Most monoclonal antibodies are produced at an enhanced rate during the Gq phase of the cell cycle (8—10). A model for antibody production based on this cell cycle dependence and traditional Monod kinetics for cell growth has been proposed (11). However, it is not clear if this cell cycle dependence carries over to recombinant CHO cells. In fact it has been reported that dihydrofolate reductase, the gene for which is co-amplified with the gene for the recombinant protein in CHO cells, synthesis is associated with the S phase of the cell cycle (12). Hence it is possible that the product formation kinetics in recombinant CHO cells is different from that of hybridomas. [Pg.230]

Earlier, the 9,11-etheno analog of PGHi, compound C, had been synthesized by the route shown below. It was found that this compound inhibits the PGH isomerase which forms PGEi but not the PGH reductase which catalyzes the formation of PGFiq (Ref. 6). [Pg.289]

FIGURE 18.35 Formation of THF from folic acid by the dihydrofolate reductase reaction. The R group on these folate molecules symbolizes the one to seven (or more) glutamate units that folates characteristically contain. All of these glutamates are bound in y-carboxyl amide linkages (as in the folic acid structure shown in the box A Deeper Look Folic Acid, Pterins, and Insect VFingis). The one-carbon units carried by THF are bound at N, or at or as a single carbon attached to both... [Pg.603]

Methyl-coenzyme M reductase participates in the conversion of CO2 to CH4 and contains 6-coordinate nickel(II) in a highly hydrogenated and highly flexible porphyrin system. This flexibility is believed to allow sufficient distortion of the octahedral ligand field to produce low-spin Ni" (Fig. 27.7) which facilitates the formation of a Ni -CHs intermediate. [Pg.1167]

The complex thioamide lolrestat (8) is an inhibitor of aldose reductase. This enzyme catalyzes the reduction of glucose to sorbitol. The enzyme is not very active, but in diabetic individuals where blood glucose levels can. spike to quite high levels in tissues where insulin is not required for glucose uptake (nerve, kidney, retina and lens) sorbitol is formed by the action of aldose reductase and contributes to diabetic complications very prominent among which are eye problems (diabetic retinopathy). Tolrestat is intended for oral administration to prevent this. One of its syntheses proceeds by conversion of 6-methoxy-5-(trifluoroniethyl)naphthalene-l-carboxyl-ic acid (6) to its acid chloride followed by carboxamide formation (7) with methyl N-methyl sarcosinate. Reaction of amide 7 with phosphorous pentasulfide produces the methyl ester thioamide which, on treatment with KOH, hydrolyzes to tolrestat (8) 2[. [Pg.56]

Statins lower plasma cholesterol levels by inhibiting HMG-CoA reductase in the mevalonate pathway (Fig. 4). Some research has shown that certain statins (but not all) stimulate BMP-2 expression in osteoblasts, increase bone formation and mimic N-BP in that they inhibit bone resorption. The use of statins in osteoporosis is presently being investigated. [Pg.282]

In contrast to the formation and calcification of bones, vitamin K seems to lower the risk of aortic calcification. The mechanisms for these antagonistic effects is not known but a participation of osteocalcin (expressed in artherosclerotic plaques) as well as of matrix Gla protein (MGP) are discussed. In addition, the vitamin K epoxide reductase complex seems to be involved [5]. [Pg.1300]

Formate-FDFI system was also applied in the reduction of 6-bromotetralone to (S)-6-bromotetralol, a potential pharmaceutical precursor, with the NADFI-depen-dent ketone reductase from Trichosporon capitatum [4b]. A resin (XAD L-323) was used to bind the product (Figure 8.4). [Pg.195]

Figure 8.4 Reduction of 6-bromotetralone with reductase from Trichosporon capitatum using formate as a hydrogen source [4b]... Figure 8.4 Reduction of 6-bromotetralone with reductase from Trichosporon capitatum using formate as a hydrogen source [4b]...
The addition of sulfite to APS reductase results in changes of the flavin visible spectrum that are explained by the formation of an adduct between the sulfite and the FAD group (135). Addition of AMP to the as-isolated enzyme causes no change in the spectroscopic properties. Addition of AMP to the sulfite-reacted enzyme causes the reduction of center I. However, the formation of a semiquinone signal has never been observed either by EPR or visible spectroscopies. Also, Mossbauer and EPR data indicate that AMP closely interacts with center I (139). [Pg.384]

The enzymes that utilize molybdenum can be grouped into two broad categories (1) the nitrogenases, where Mo is part of a multinu-clear metal center, or (2) the mononuclear molybdenum enzymes, such as xanthine oxidase (XO), dimethyl sulfoxide (DMSO) reductase, formate dehydrogenase (FDH), and sulfite oxidase (SO). The last... [Pg.395]

The three known crystal structures of molybdopterin-containing enzymes are from members of the first two families the aldehyde oxido-reductase from D. gigas (MOP) belongs to the xanthine oxidase family (199, 200), whereas the DMSO reductases from Rhodobacter (R.) cap-sulatus (201) and from/ , sphaeroides (202) and the formate dehydrogenase from E. coli (203) are all members of the second family of enzymes. There is a preliminary report of the X-ray structure for enzymes of the sulfite oxidase family (204). [Pg.396]

Sulfate reducers can use a wide range of terminal electron acceptors, and sulfate can be replaced by nitrate as a respiratory substrate. Molybdenum-containing enzymes have been discovered in SRB (also see later discussion) and, in particular, D. desulfuricans, grown in the presence of nitrate, generates a complex enzymatic system containing the following molybdenum enzymes (a) aldehyde oxidoreduc-tase (AOR), which reduces adehydes to carboxylic acids (b) formate dehydrogenase (FDH), which oxidizes formate to CO2 and (c) nitrate reductase (the first isolated from a SRB), which completes the enzy-... [Pg.396]

The molyhdopterin cofactor, as found in different enzymes, may be present either as the nucleoside monophosphate or in the dinucleotide form. In some cases the molybdenum atom binds one single cofactor molecule, while in others, two pterin cofactors coordinate the metal. Molyhdopterin cytosine dinucleotide (MCD) is found in AORs from sulfate reducers, and molyhdopterin adenine dinucleotide and molyb-dopterin hypoxanthine dinucleotide were reported for other enzymes (205). The first structural evidence for binding of the dithiolene group of the pterin tricyclic system to molybdenum was shown for the AOR from Pyrococcus furiosus and D. gigas (199). In the latter, one molyb-dopterin cytosine dinucleotide (MCD) is used for molybdenum ligation. Two molecules of MGD are present in the formate dehydrogenase and nitrate reductase. [Pg.397]

Scheumann, V., Schoch, S., and Rudiger, W., Chlorophyll A formation in the chlorophyll b reductase reaction requires reduced ferredoxin, J. Biol. Chem., 273, 35102, 1998. [Pg.46]

A strain of Escherichia coli produces a naphthotriazole from 2,3-diaminonaphthalene and nitrite that is formed from nitrate by the action of nitrate reductase. The initial product is NO, which is converted by reactions with oxygen into the active nitrosylating agent that reacts chemically with the amine (Ji and Hollocher 1988). A comparable reaction may plausibly account for the formation of dimethylnitrosamine by Pseudomonas stutzeri during growth with dimethylamine in the presence of nitrite (Mills and Alexander 1976) (Figure 2.2f). [Pg.55]


See other pages where Formate reductase is mentioned: [Pg.44]    [Pg.475]    [Pg.43]    [Pg.281]    [Pg.102]    [Pg.282]    [Pg.373]    [Pg.427]    [Pg.32]    [Pg.596]    [Pg.865]    [Pg.179]    [Pg.247]    [Pg.13]    [Pg.57]    [Pg.404]    [Pg.460]    [Pg.483]    [Pg.483]    [Pg.27]    [Pg.225]    [Pg.172]    [Pg.229]    [Pg.260]    [Pg.265]    [Pg.358]    [Pg.354]    [Pg.355]    [Pg.108]    [Pg.114]   
See also in sourсe #XX -- [ Pg.453 ]




SEARCH



© 2024 chempedia.info