Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Formaldehyde phenol reactions with

A real co-condensation between phenol and urea can be performed by two ways (I) reaction of methylol phenols with urea [98-101] (2) acidic reaction of UFC (urea-formaldehyde concentrate) with phenol followed by an alkaline reaction [102,103]. [Pg.1058]

This chapter compares the reaction of gas-phase methylation of phenol with methanol in basic and in acid catalysis, with the aim of investigating how the transformations occurring on methanol affect the catalytic performance and the reaction mechanism. It is proposed that with the basic catalyst, Mg/Fe/0, the tme alkylating agent is formaldehyde, obtained by dehydrogenation of methanol. Formaldehyde reacts with phenol to yield salicyl alcohol, which rapidly dehydrogenates to salicyladehyde. The latter was isolated in tests made by feeding directly a formalin/phenol aqueous solution. Salicylaldehyde then transforms to o-cresol, the main product of the basic-catalyzed methylation of phenol, likely by means of an intramolecular H-transfer with formaldehyde. With an acid catalyst, H-mordenite, the main products were anisole and cresols moreover, methanol was transformed to alkylaromatics. [Pg.399]

It is reported that an industrial explosion was initiated by charging potassium hydroxide in place of potassium carbonate to the chloro-nitro compound in the sulfoxide [1], Dry potassium carbonate is a useful base for nucleophilic displacement of chlorine in such systems, reaction being controlled by addition of the nucleophile. The carbonate is not soluble in DMSO and possesses no significant nucleophilic activity itself. Hydroxides have, to create phenoxide salts as the first product. These are better nucleophiles than their progenitor, and also base-destabilised nitro compounds. Result heat and probable loss of control. As it nears its boiling point DMSO also becomes susceptible to exothermic breakdown, initially to methanethiol and formaldehyde. Methanethiolate is an even better nucleophile than a phenoxide and also a fairly proficient reducer of nitro-groups, while formaldehyde condenses with phenols under base catalysis in a reaction which has itself caused many an industrial runaway and explosion. There is thus a choice of routes to disaster. Industrial scale nucleophilic substitution on chloro-nitroaromatics has previously demonstrated considerable hazard in presence of water or hydroxide, even in solvents not themselves prone to exothermic decomposition [2],... [Pg.958]

Examples of very well-known reactions which involve so many steps that kinetic analysis is difficult are the condensations of formaldehyde with compounds such as phenol, cresol, urea and melamine. In the reaction with phenol in alkaline medium the formation of methylol... [Pg.570]

In contrast to aliphatic alcohols, which are mostly less acidic than phenol, phenol forms salts with aqueous alkali hydroxide solutions. At room temperature, phenol can be liberated from the salts even with carbon dioxide. At temperatures near the boiling point of phenol, it can displace carboxylic acids, e.g. acetic acid, from their salts, and then phenolates are formed. The contribution of ortho- and -quinonoid resonance structures allows electrophilic substitution reactions such as chlorination, sulphonation, nitration, nitrosation and mercuration. The introduction of two or three nitro groups into the benzene ring can only be achieved indirectly because of the sensitivity of phenol towards oxidation. Nitrosation in the para position can be carried out even at ice bath temperature. Phenol readily reacts with carbonyl compounds in the presence of acid or basic catalysts. Formaldehyde reacts with phenol to yield hydroxybenzyl alcohols, and synthetic resins on further reaction. Reaction of acetone with phenol yields bisphenol A [2,2-bis(4-hydroxyphenyl)propane]. [Pg.5]

A third reason for predicting very low emissions of formaldehyde from phenolic panels is that the cured resin is extremely stable and does not break down to release additional formaldehyde, even under extremely harsh environmental conditions ( ). The high resistance of phenolic resins to deterioration under severe service conditions is, of course, a principal reason they are used so widely in making exterior types of wood panel products. Because of their chemical stability the U.S. Environmental Protection Agency has declared that phenol formaldehyde resins represent a consumptive use of formaldehyde, meaning that formaldehyde is irreversibly consumed in its reaction with phenol so that the formaldehyde loses its chemical identity (3). [Pg.27]

CAS 50-00-0 EINECS/ELINCS 200-001-8 Uses Formaldehyde for mfg. of syn. resins by reaction with phenols, urea, melamines for molded goods, elec, insulation, binders, plywood adhesives, varnishes, wet-str. resins for paper and textiles chem. intermediate... [Pg.400]

In 1932, Quelet used the Blanc procedure, replacing formaldehyde with aliphatic aldehydes in the reaction with phenolic ethers. The resulting reaction mixtures were found to contain a-chloroalkyl derivatives. Although the conditions are virtually identical and the reaction proceeds via the same basic mechanism, the Blanc chloromethylation is often referred to as the Quelet reaction. [Pg.590]

Formaldehyde reacts with phenol by electrophilic substitution at the 2-, 4- and 6-positions of phenol and will subsequently condense, forming a densely cross-linked network. This reaction can be catalyzed by acid as well as base catalysts. The nature of the product obtained is largely dependent on the type of phenol, the molar ratio of formaldehyde to phenol (f p) and the catalyst used. Phenolic resins are mainly divided into two broad classes resoles and novolacs. [Pg.69]

Methanol is converted to formaldehyde, acetic acid, acetic anhydride and various methyl ester solvents. Formaldehyde finds its major application in the synthesis of resins in condensation reactions with phenols. [Pg.321]

The main processes for the manufacture of hydroxybenzaldehydes are based on phenol. The most widely used process is the saligenin process. Saligenin (2-hydroxybenzyl alcohol [90-01-7]) and 4-hydroxybenzyl alcohol [623-05-2] are produced from base-catalyzed reaction of formaldehyde with phenol (35). Air oxidation of saligenin over a suitable catalyst such as platinium or palladium produces sahcylaldehyde (62). [Pg.506]

PhenoHc resins are prepared by the reaction of phenol or substituted phenol with an aldehyde, especially formaldehyde, in the presence of an acidic or basic catalyst. Their thermosetting character and the exotherm associated with the reaction presented technical barriers to commercialization. In 1900, the first U.S. patent was granted for a phenoHc resin, using the resin in cast form as a substitute for hard mbber (10). [Pg.292]

Special resoles are obtained with amine catalysts, which affect chemical and physical properties because amine is incorporated into the resin. For example, the reaction of phenol, formaldehyde, and dimethylamine is essentially quantitative (28). [Pg.296]

The in situ process is simpler because it requires less material handling (35) however, this process has been used only for resole resins. When phenol is used, the reaction system is initially one-phase alkylated phenols and bisphenol A present special problems. As the reaction with formaldehyde progresses at 80—100°C, the resin becomes water-insoluble and phase separation takes place. Catalysts such as hexa produce an early phase separation, whereas NaOH-based resins retain water solubiUty to a higher molecular weight. If the reaction medium contains a protective coUoid at phase separation, a resin-in-water dispersion forms. Alternatively, the protective coUoid can be added later in the reaction sequence, in which case the reaction mass may temporarily be a water-in-resin dispersion. The protective coUoid serves to assist particle formation and stabUizes the final particles against coalescence. Some examples of protective coUoids are poly(vinyl alcohol), gum arabic, and hydroxyethjlceUulose. [Pg.298]

Reactions with Aldehydes and Ketones. An important use for alkylphenols is ia phenol—formaldehyde resias. These resias are classified as resoles or aovolaks (see Phenolic resins). Resoles are produced whea oae or more moles of formaldehyde react with oae mole of pheaol uader basic catalysis. These resias are thermosets. Novolaks are thermoplastic resias formed whea an excess of phenol reacts with formaldehyde under acidic conditions. The acid protonates formaldehyde to generate the alkylating electrophile (17). [Pg.60]

Methylphenol is converted to 6-/ f2 -butyl-2-methylphenol [2219-82-1] by alkylation with isobutylene under aluminum catalysis. A number of phenoHc anti-oxidants used to stabilize mbber and plastics against thermal oxidative degradation are based on this compound. The condensation of 6-/ f2 -butyl-2-methylphenol with formaldehyde yields 4,4 -methylenebis(2-methyl-6-/ f2 butylphenol) [96-65-17, reaction with sulfur dichloride yields 4,4 -thiobis(2-methyl-6-/ f2 butylphenol) [96-66-2] and reaction with methyl acrylate under base catalysis yields the corresponding hydrocinnamate. Transesterification of the hydrocinnamate with triethylene glycol yields triethylene glycol-bis[3-(3-/ f2 -butyl-5-methyl-4-hydroxyphenyl)propionate] [36443-68-2] (39). 2-Methylphenol is also a component of cresyHc acids, blends of phenol, cresols, and xylenols. CresyHc acids are used as solvents in a number of coating appHcations (see Table 3). [Pg.67]

Uses ndReactions. The Prins reaction of 3-carene with formaldehyde in acetic acid gives mainly 2-carene-4-methanol acetate, which when saponified produces the 2-carene-4-methanol, both of which are commercial products of modest usage (60). 3-Carene (28) also reacts with acetic anhydride with a catalyst (ZnCl2) to give 4-acetyl-2-carene (29) (61), which is also a commercial product. Although 3-carene does not polymerize to produce terpene resins, copolymerization with phenol has been successfully commercialized by DRT in France (62). [Pg.414]

Phenolic Resins. PhenoHc resins [9003-35 ] (qv) are thermosets prepared by the reaction of phenol with formaldehyde, through either the base-cataly2ed one-stage or the acid-cataly2ed two-stage process. The Hquid intermediate may be used as an adhesive and bonding resin for plywood, particle board, ftberboard, insulation, and cores for laminates. The physical properties for typical phenoHc laminates made with wood are Hsted in Table 1. [Pg.328]

Other Coatings Resins. A wide variety of other resin types are used in coatings. PhenoHc resins, ie, resins based on reaction of phenols and formaldehyde, have been used in coatings for many years. Use has been declining but there are stUl significant appHcations, particularly with epoxy resins in interior can coatings. [Pg.341]

Other modifications of the polyamines include limited addition of alkylene oxide to yield the corresponding hydroxyalkyl derivatives (225) and cyanoethylation of DETA or TETA, usuaHy by reaction with acrylonitrile [107-13-1/, to give derivatives providing longer pot Hfe and better wetting of glass (226). Also included are ketimines, made by the reaction of EDA with acetone for example. These derivatives can also be hydrogenated, as in the case of the equimolar adducts of DETA and methyl isobutyl ketone [108-10-1] or methyl isoamyl ketone [110-12-3] (221 or used as is to provide moisture cure performance. Mannich bases prepared from a phenol, formaldehyde and a polyamine are also used, such as the hardener prepared from cresol, DETA, and formaldehyde (228). Other modifications of polyamines for use as epoxy hardeners include reaction with aldehydes (229), epoxidized fatty nitriles (230), aromatic monoisocyanates (231), or propylene sulfide [1072-43-1] (232). [Pg.47]


See other pages where Formaldehyde phenol reactions with is mentioned: [Pg.1062]    [Pg.126]    [Pg.47]    [Pg.374]    [Pg.209]    [Pg.186]    [Pg.390]    [Pg.58]    [Pg.330]    [Pg.297]    [Pg.595]    [Pg.17]    [Pg.60]    [Pg.1062]    [Pg.312]    [Pg.229]    [Pg.170]    [Pg.372]    [Pg.7]    [Pg.531]    [Pg.345]    [Pg.189]    [Pg.5]   
See also in sourсe #XX -- [ Pg.197 ]




SEARCH



Formaldehyde reaction

Formaldehyde with phenols

Phenol formaldehyd

Phenol phenolation reaction

Phenol reactions

Phenol-Formaldehyde (Phenolics)

Phenol-formaldehyde

Phenol-formaldehyde reaction

Phenolates, reactions

Phenolation reaction

Phenols reactions with

Reaction with formaldehyde

Reaction with phenolates

© 2024 chempedia.info