Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Forests deforestation

However, the ability of these and other forms of plant life to absorb carbon dioxide is not keeping up with the increase in carbon dioxide. Most scientists agree that the primary source of the increase of carbon dioxide is the burning of fossil fuels such as gasoline, coal, and natural gas. The cutting and burning of trees in the rain forests (deforestation) also reduces the amount of carbon dioxide removed from the atmosphere. [Pg.90]

Human activity, particularly in the developing world, continues to make it more difficult to sustain the world s biomass growth areas. It has been estimated that tropical forests are disappearing at a rate of tens of thousands of hm per year. Satellite imaging and field surveys show that Brazil alone has a deforestation rate of approximately 8 x 10 hm /yr (5). At a mean net carbon yield for tropical rain forests of 9.90 t/hm yr (4) (4.42 short ton /acreyr), this rate of deforestation corresponds to a loss of 79.2 x 10 t/yr of net biomass carbon productivity. [Pg.10]

The manufacture of sugar was early understood to be an energy-intensive process. Cuba was essentially deforested to obtain the wood that fueled the evaporation of water from the cane juice. When the forests were gone, the bagasse burner was developed to use the dry cane pulp, called bagasse, for fuel. Bagasse was no longer a waste product its minimal value is the cost of its replacement as fuel. [Pg.12]

Land use changes in the tropics have resulted in a landscape characterized as a mosaic of logged forests, cleared fields, and successional forests. This results in the transformation from extremely fire resistant rainforest ecosystems to anthropogenic landscapes in which fire is a common event (16, 17), Fires occur in disturbed tropical forests because deforestation has a dramatic effect on microclimate. Deforestation results in lower relative humidities, increased wind speeds, and increased air temperatures. In addition, deforestation results in increased quantities of biomass that are susceptible to fire. This biomass may be in the form of forest slash, leaf litter, grasses, lianas or herbaceous species (16, 18). [Pg.427]

Abusive forest practices are neither a recent phenomenon nor limited to developing tropical countries. Deforestation has brought about economic and social declines of civilizations for over 5,000 years 19). Postel and Ryan (1) estimated only 1.5 million ha of primary forests remain out of the 6.2 biUion ha... [Pg.427]

Deforestation, Biomass Burning and the Biogeochemical Balance of Forests... [Pg.428]

Biomass Redistribution Associated with Deforestation and Fire. The influence of deforestation on biogeochemical cycles is dependent upon a number of factors associated with the unique characteristics of the ecosystem (climate, soils, topography, etc), the quantity of the total nutrient pool stored in aboveground biomass (Table II), and the level of disturbance (i.e. the degree of canopy removal, soil disturbance, and the quantity of wood or other forest products exported from the site). The quantity of biomass consumed by one or more slash fires following deforestation can also dramatically increase nutrient losses, influence post fire plant succession, and hence, postfire biogeochemical cycles. [Pg.430]

Figure 2. The carbon dynamics of a primary forest prior to and following deforestation and slash burning. Arrows represent the relative magnitude of C flux. In the primary forest (represented by the large box at the top of the figure), the C pool is in a dynamic equilibrium with inputs approximately equalling exports. With deforestation and fire, the balance is altered with exports far exceeding imports. Figure 2. The carbon dynamics of a primary forest prior to and following deforestation and slash burning. Arrows represent the relative magnitude of C flux. In the primary forest (represented by the large box at the top of the figure), the C pool is in a dynamic equilibrium with inputs approximately equalling exports. With deforestation and fire, the balance is altered with exports far exceeding imports.
The maximum temperature and duration of heating during fires are important variables that influence the soil nutrient status, as well as the survival of residual vegetation following fire (Table III). Deforestation results in the presence of large quantities of wood debris in close proximity to the soil surface. Fires in this scenario result in soil temperatures and magnitudes of heat flux far in excess of those which occur in fires in uncut forests (Shea, R. W. Oregon State University, unpublished data). [Pg.435]

The burning of slash following deforestation, whether intentional or unintentional, results in far greater direct and indirect losses of nutrients than deforestation alone. This is particularly true in many tropical forests where only a small fraction (if any) of the aboveground biomass is removed prior to burning. Carbon losses from slash fires in the tropical dry forest were 4-5 fold greater than C losses from wood export (Table IV) (55). Slash fires in tropical dry forests resulted in N losses of 428-500 kg ha whereas fuel wood export of the relatively N-poor coarse woody debris amounted to approximately 41 kg N ha" Losses of P increase with increasing fire severity. P losses of 10-77 kg ha" as a result of severe fires is not uncommon (Table TV) (53, 58, 60). [Pg.439]

Much of the surface soil erosion and hence nutrient loss occurs when deforestation and biomass burning removes and/or consumes the organic materials that protect the soil surface. Significant losses may occur by dry ravel or overland water erosion associated with precipitation events. Under a shifting cultivation system in a tropical deciduous forest ecosystem in Mexico, Maass et al. 61) reported first year losses of N, P, K, and Ca were 187, 27, 31, and 378 kg ha" respectively. In contrast, losses in adjacent undisturbed forests were less than 0.1 kg ha for all nutrients except Ca (losses were 0.1-0.5 kg ha for Ca). [Pg.443]

Similar results were reported in deforested Amazonian rainforests (66). Within three years following forest clearing and burning, nutrient concentrations of soil leachates had returned to levels typical of primary forests of the area. A combination of high rates of immobilization and storage by successional vegetation, coupled with a decline in easily decomposable substrates, was attributed to the reduction in leaching losses. [Pg.443]

Figure 7. Another temperate coniferous forest site of the Pacific Northwest, USA following clearcutting and slash burning. Severe levels of deforestation result in large quantities of nutrient losses through wood export, biomass burning and accelerated erosion and leaching losses. (Photograph is by courtesy of Dian L. Cummings. ... Figure 7. Another temperate coniferous forest site of the Pacific Northwest, USA following clearcutting and slash burning. Severe levels of deforestation result in large quantities of nutrient losses through wood export, biomass burning and accelerated erosion and leaching losses. (Photograph is by courtesy of Dian L. Cummings. ...
Through time, human civilizations have repeatedly made the same critical error the excessive exploitation of forest resources or the failure to practice forestry on a sustainable basis. The earliest recorded cases of excessive deforestation occurred approximately 5,000 B.P. in the very cradle of western civilization, Mesopotamia 19), Since that period, abusive levels of forest exploitation have severely degraded or caused the complete disappearance of forests in regions of Europe, Africa, Asia, Australia and the Americas. Truly, the negative consequences of excessive levels of deforestation is a lesson that has been learned by few civilizations. [Pg.449]

Of the entire surface occupied by the Yungas ecosystem in the country, 61% of it extends through this province, making it essential to focus on studies in this particular region. Also, Salta has 23% of the total surface of the country s native forests, and deforestation in this province is triple the world average [29]. [Pg.59]


See other pages where Forests deforestation is mentioned: [Pg.54]    [Pg.43]    [Pg.70]    [Pg.218]    [Pg.54]    [Pg.43]    [Pg.70]    [Pg.218]    [Pg.158]    [Pg.18]    [Pg.426]    [Pg.426]    [Pg.427]    [Pg.427]    [Pg.428]    [Pg.428]    [Pg.430]    [Pg.433]    [Pg.435]    [Pg.438]    [Pg.439]    [Pg.443]    [Pg.443]    [Pg.448]    [Pg.448]    [Pg.449]    [Pg.450]    [Pg.54]    [Pg.55]    [Pg.56]    [Pg.56]    [Pg.56]    [Pg.56]    [Pg.57]    [Pg.57]    [Pg.65]    [Pg.76]   
See also in sourсe #XX -- [ Pg.54 ]

See also in sourсe #XX -- [ Pg.172 , Pg.188 , Pg.400 ]




SEARCH



Deforestation

© 2024 chempedia.info