Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solubility folic acid

Bile acid sequestrants may interfere with die digestion of fats and prevent die absorption of die fat-soluble vitamins (vitamins A, D, E, and K) and folic acid. When die bile acid sequestrants are used for long-term therapy, vitamins A and D may be given in a water-soluble form or administered parenterally. If bleedingtendencies occur as die result of vitamin K deficiency, parenteral vitamin K is administered for immediate treatment, and oral vitamin K is given for prevention of a deficiency in the futum... [Pg.413]

The water-soluble vitamins comprise the B complex and vitamin C and function as enzyme cofactors. Fofic acid acts as a carrier of one-carbon units. Deficiency of a single vitamin of the B complex is rare, since poor diets are most often associated with multiple deficiency states. Nevertheless, specific syndromes are characteristic of deficiencies of individual vitamins, eg, beriberi (thiamin) cheilosis, glossitis, seborrhea (riboflavin) pellagra (niacin) peripheral neuritis (pyridoxine) megaloblastic anemia, methyhnalonic aciduria, and pernicious anemia (vitamin Bjj) and megaloblastic anemia (folic acid). Vitamin C deficiency leads to scurvy. [Pg.481]

No specific dietary restrictions are recommended for patients with IBD, but avoidance of high-residue foods in patients with strictures may help to prevent obstruction. Nutritional strategies in patients with long-standing IBD may include use of vitamin and mineral supplementation. Administration of vitamin B12, folic acid, fat-soluble vitamins, and iron may be needed to prevent or treat deficiencies. In severe cases, enteral or parenteral nutrition maybe needed to achieve adequate caloric intake. [Pg.285]

Water-soluble vitamins removed by hemodialysis (HD) contribute to malnutrition and vitamin deficiency syndromes. Patients receiving HD often require replacement of water-soluble vitamins to prevent adverse effects. The vitamins that may require replacement are ascorbic acid, thiamine, biotin, folic acid, riboflavin, and pyridoxine. Patients receiving HD should receive a multivitamin B complex with vitamin C supplement, but should not take supplements that include fat-soluble vitamins, such as vitamins A, E, or K, which can accumulate in patients with renal failure. [Pg.394]

Both organic and inorganic ligands such as Cl and dissolved organic carbon (fulvie acid and carboxylic acids) decrease metal adsorption. In the arid soils with higher pH, folic acids increase the solubility of metals such as Cu and Zn. The interaction between the transition of heavy metals and silicate surfaces was reviewed by McBride (1991). [Pg.145]

The water-soluble vitamins generally function as cofactors for metabolism enzymes such as those involved in the production of energy from carbohydrates and fats. Their members consist of vitamin C and vitamin B complex which include thiamine, riboflavin (vitamin B2), nicotinic acid, pyridoxine, pantothenic acid, folic acid, cobalamin (vitamin B12), inositol, and biotin. A number of recent publications have demonstrated that vitamin carriers can transport various types of water-soluble vitamins, but the carrier-mediated systems seem negligible for the membrane transport of fat-soluble vitamins such as vitamin A, D, E, and K. [Pg.263]

There is, moreover, the field of hypervitaminoses, which has been explored for the fat-soluble vitamins, but hardly touched in the water-soluble vitamins. The production of combined system disease by folic acid therapy of pernicious anemia belongs to this group, but many more instances wait to be recognized. The indiscriminate use of polyvitamin preparations by poorly informed clinicians is bound to mask such states and to delay their discovery. Also, the use of flushing doses of vitamins in diagnostic tests may cause acute hypervitaminoses. [Pg.237]

Yao Z, Li C, Shi G (2008) Optically active supramolecular complexes of water-soluble achiral polythiophenes and folic acid spectroscopic studies and sensing applications. Langmuir 24 12829-12835... [Pg.450]

II Water-soluble vitamins One index vitamin folic acid (if present)... [Pg.414]

In an investigation of the water-soluble vitamins in human skin,71 it was found that 15 individuals showed relatively small ranges (less than 2-fold) for vitamin B12, folic acid, and biotin about 2-fold ranges in the cases of riboflavin, niacin, and thiamine about a 4-fold range in the case of ascorbic acid, and more than a 5-fold range in the case of pantothenic acid. In another study72 it was found that the total choline content of normal skin varied in four individuals over approximately a 10-fold range 127 to 1200 ig. per gm. The variation in the free choline in the same individuals was relatively small. [Pg.94]

The SP procedure of water-soluble vitamins from multivitamin tablets is particularly challenging due to the diverse analytes of varied hydrophobicities and pfC. Water-soluble vitamins (WSVs) include ascorbic acid (vitamin C), niacin, niacinamide, pyridoxine (vitamin B ), thiamine (vitamin Bj), folic acid, riboflavin (vitamin B2) and others. While most WSVs are highly water soluble, riboflavin is quite hydrophobic and insoluble in water. Folic acid is acidic while pyridoxine and thiamine are basic. In addition, ascorbic acid is light sensitive and easily oxidized. The extraction strategy employed was a two-step approach using mixed solvents of different polarity and acidity as follows ... [Pg.138]

These three compounds exert many similar effects in nucleotide metabolism of chicks and rats [167]. They cause an increase of the liver RNA content and of the nucleotide content of the acid-soluble fraction in chicks [168], as well as an increase in rate of turnover of these polynucleotide structures [169,170]. Further experiments in chicks indicate that orotic acid, vitamin B12 and methionine exert a certain action on the activity of liver deoxyribonuclease, but have no effect on ribonuclease. Their effect is believed to be on the biosynthetic process rather than on catabolism [171]. Both orotic acid and vitamin Bu increase the levels of dihydrofolate reductase (EC 1.5.1.4), formyltetrahydrofolate synthetase and serine hydroxymethyl transferase in the chicken liver when added in diet. It is believed that orotic acid may act directly on the enzymes involved in the synthesis and interconversion of one-carbon folic acid derivatives [172]. The protein incorporation of serine, but not of leucine or methionine, is increased in the presence of either orotic acid or vitamin B12 [173]. In addition, these two compounds also exert a similar effect on the increased formate incorporation into the RNA of liver cell fractions in chicks [174—176]. It is therefore postulated that there may be a common role of orotic acid and vitamin Bj2 at the level of the transcription process in m-RNA biosynthesis [174—176]. [Pg.290]

Pharmacology Vitamin C, a water-soluble vitamin, is an essential vitamin in man however, its exact biological functions are not fully understood. It is essential for the formation and the maintenance of intercellular ground substance and collagen, for catecholamine biosynthesis, for synthesis of carnitine and steroids, for conversion of folic acid to folinic acid and for tyrosine metabolism. [Pg.5]

Water-soluble vitamins in formulations have been determined by use of ion-pair chromatography. The vitamins include several B vitamins as well as niacin, folic acid, and ascorbic acid (565). Vitamins D and Da were rapidly separated on reverse phase columns (247) as are vitamins A, D, and E in multivitamin tablets (564). Addition of silver ions to the mobile phase has been shown to increase the flexibility inherent in RPC by complexing with the unsaturated bonds and thereby decreasing the retention factor. This effect is also observed with other unsaturated drug molecules including steroids (247). Vitamin A and related compounds have... [Pg.151]

Vitamins are chemically unrelated organic compounds that cannot be synthesized by humans and, therefore, must must be supplied by the diet. Nine vitamins (folic acid, cobalamin, ascorbic acid, pyridoxine, thiamine, niacin, riboflavin, biotin, and pantothenic acid) are classified as water-soluble, whereas four vitamins (vitamins A, D, K, and E) are termed fat-soluble (Figure 28.1). Vitamins are required to perform specific cellular functions, for example, many of the water-soluble vitamins are precursors of coenzymes for the enzymes of intermediary metabolism. In contrast to the water-soluble vitamins, only one fat soluble vitamin (vitamin K) has a coenzyme function. These vitamins are released, absorbed, and transported with the fat of the diet. They are not readily excreted in the urine, and significant quantities are stored in Die liver and adipose tissue. In fact, consumption of vitamins A and D in exoess of the recommended dietary allowances can lead to accumulation of toxic quantities of these compounds. [Pg.371]

The antiscurvy (antiscorbutic) activity was called vitamin C, and when its structure became known it was called ascorbic acid. The fat-soluble factor preventing rickets was designated vitamin D. By 1922, it was recognized that another fat-soluble factor, vitamin E, is essential for full-term pregnancy in the rat. In the early 1930s vitamin K and the essential fatty acids were added to the list of fat-soluble vitamins. Study of the human blood disorders "tropical macrocytic anemia" and "pernicious anemia" led to recognition of two more water-soluble vitamins, folic acid and vitamin B12. The latter is required in minute amounts and was not isolated until 1948. Have all the vitamins been discovered Rats can be reared on an almost completely synthetic diet. However, there is the possibility that for good health humans require some as yet undiscovered compounds in our diet. Furthermore, it is quite likely that we receive some essential nutrients that we cannot synthesize from bacteria in our intestinal tracts. An example may be the pyrroloquinoline quinone (PQQ).e... [Pg.721]

Nutritionally, the most important water-soluble vitamins in citrus fruits are ascorbic acid, folic acid and pyridoxine. Clinical studies on the bioavailability of these vitamins, as well as basic research on the absorption and chemistry of these vitamins, have yielded valuable information adding to our overall understanding of the nutritional quality and bioavailability of these vitamins found in citrus fruits. [Pg.25]

Many cells require media supplemented with complex B vitamins, while other vitamins are presumably supplied by the addition of serum to culture media. Nevertheless, when serum-free media are employed, not only the water-soluble vitamins should be provided, but also the lipid-soluble ones, such as biotin, folic acid, niacin, panthotenic acid, thiamine, and ascorbic acid, as well as the vitamins B12, A, D, E, and K. [Pg.117]

Dendrimers used for DNA delivery most commonly have positive net surface charges. The most well studied molecules for gene delivery are those based on an ethylene diamine or ammonia core with polyamidoamine (PAMAM) dendrites or those based on bufylenediamine cores and polypropylenimine (PPI) dendrites. Solubility of PAMAM dendrimers can be enhanced by partial acetylation of the reactive amino groups and they can be conjugated with various targeting entities such as folic acid to target receptors on specific cancer cells (42). [Pg.18]


See other pages where Solubility folic acid is mentioned: [Pg.52]    [Pg.52]    [Pg.273]    [Pg.285]    [Pg.569]    [Pg.509]    [Pg.31]    [Pg.189]    [Pg.371]    [Pg.1204]    [Pg.35]    [Pg.420]    [Pg.157]    [Pg.474]    [Pg.612]    [Pg.120]    [Pg.717]    [Pg.266]    [Pg.85]    [Pg.515]    [Pg.515]    [Pg.273]    [Pg.285]    [Pg.249]    [Pg.314]    [Pg.46]    [Pg.106]    [Pg.126]    [Pg.224]    [Pg.90]    [Pg.542]   
See also in sourсe #XX -- [ Pg.160 ]




SEARCH



Folic

Folic acid

Water-soluble vitamins folic acid

© 2024 chempedia.info