Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fluorine physical properties

One surprising physical property of fluorine is its electron affinity which, at — 333 kJmoPS is lower than that of chlorine, -364 kJmol , indicating that the reaction X(g) + -> X (g) is more... [Pg.313]

Because of the extreme difficulty in handling fluorine, reported physical properties (Table 1) show greater than normal variations among investigators. A detailed summary and correlation of the physical, thermodynamic, transport, and electromagnetic properties of fluorine is given in Reference 20. [Pg.122]

The common structural element in the crystal lattice of fluoroaluminates is the hexafluoroaluminate octahedron, AIF. The differing stmctural features of the fluoroaluminates confer distinct physical properties to the species as compared to aluminum trifluoride. For example, in A1F. all corners are shared and the crystal becomes a giant molecule of very high melting point (13). In KAIF, all four equatorial atoms of each octahedron are shared and a layer lattice results. When the ratio of fluorine to aluminum is 6, as in cryoHte, Na AlF, the AIFp ions are separate and bound in position by the balancing metal ions. Fluorine atoms may be shared between octahedrons. When opposite corners of each octahedron are shared with a corner of each neighboring octahedron, an infinite chain is formed as, for example, in TI AIF [33897-68-6]. More complex relations exist in chioUte, wherein one-third of the hexafluoroaluminate octahedra share four corners each and two-thirds share only two corners (14). [Pg.142]

Substitution of fluorine for hydrogen in an organic compound has a profound influence on the compound s chemical and physical properties. Several factors that are characteristic of fluorine and that underHe the observed effects are the large electronegativity of fluorine, its small size, the low degree of polarizabiHty of the carbon—fluorine bond and the weak intermolecular forces. These effects are illustrated by the comparisons of properties of fluorocarbons to chlorocarbons and hydrocarbons in Tables 1 and 2. [Pg.266]

The physical properties of hydrofluorocarbons reflect their polar character, and possibly the importance of intermolecular hydrogen bonding (3). Hydrofluorocarbons often bod higher than either their PFC or hydrocarbon counterparts. For example, l-C H F bods at 91.5°C compared with 58°C for n-Q and 69°C for Within the series of fluorinated methanes, the boiling point reaches a maximum for CH2F2, which contains an equal... [Pg.282]

Properties. The physical properties of aHphatic fluorine compounds containing chlorine are similar to those of the PECs or HECs (3,5). They usually have high densities and low boiling points, viscosities, and surface tensions. The irregularity in the boiling points of the fluorinated methanes, however, does not appear in the chlorofluorocarbons. Their boiling points consistently increase with the number of chlorines present. The properties of some CECs and HCECs are shown in Tables 3 and 4. [Pg.284]

Numerous avenues to produce these materials have been explored (128—138). The synthesis of two new fluorinated bicycHc monomers and the use of these monomers to prepare fluorinated epoxies with improved physical properties and a reduced surface energy have been reported (139,140). The monomers have been polymerized with the diglycidyl ether of bisphenol A, and the thermal and mechanical properties of the resin have been characterized. The resulting polymer was stable up to 380°C (10% weight loss by tga). [Pg.540]

Table 1. Physical Properties of Fluorinated Inhalation Anesthetics... Table 1. Physical Properties of Fluorinated Inhalation Anesthetics...
The German physicist Lothar Meyer observed a periodicity in the physical properties of the elements at about the same time as Mendeleev was working on their chemical properties. Some of Meyer s observations can be reproduced by examining the molar volume for the solid element as a function of atomic number. Calculate the molar volumes for the elements in Periods 2 and 3 from the densities of the elements found in Appendix 2D and the following solid densities (g-cuU ) nitrogen, 0.88 fluorine, 1.11 neon, 1.21. Plot your results as a function of atomic number and describe any variations that you observe. [Pg.178]

Another approach to get new liquid crystals is the lateral fluorination of the stilbazole ligands,337 which is a common and highly effective tool to exert control over mesomorphism, crystal phase stability, and physical properties. Other modifications include the use of more alkoxy substituents and other alkyl sulfate anions.338-344 Ionic silver amino complexes also display liquid crystalline behavior at rather low temperatures they are of the form [Ag(NH2 -CJl +OJX (X = N03, n = 6,8,10,12,14 X = BF4, = 8,10,12,14).345... [Pg.926]

Elastomers containing fluorine, also called fluorelastomers. These combine the good physical properties of organic elastomers with the thermal stability of inorganic materials. Trade names are Viton, Fluorel, Kel-F and Technoflon. [Pg.29]

The cationic Pd(II) catalysts exhibit effective copolymerizations of ethylene and other a-olefins with polar-functionalized comonomers, with the majority of insertions occurring at the ends of branches. Among the best tolerated monomers are those bearing fluorine or oxygen-containing functionalities, such as esters, ketones, and ethers. The copolymerization of ethylene and acrylates, attractive because the monomers are inexpensive and the copolymers exhibit unique physical properties, has been well-studied mechanistically [27,69], Examples of copolymerizations of ethylene and a-olefins with methyl acrylate are shown in Table 4. In general, the amount of comonomer incorporation varies linearly with its reaction concentration and... [Pg.197]

Curiously, fluorine incorporation can result in property shifts to opposite ends of a performance spectrum. Certainly with reactivity, fluorine compounds occupy two extreme positions, and this is true of some physical properties of fluoropolymers as well. One example depends on the combination of the low electronic polarizability and high dipole moment of the carbon-fluorine bond. At one extreme, some fluoropolymers have the lowest dielectric constants known. At the other, closely related materials are highly capacitive and even piezoelectric. [Pg.9]

Fluorine-containing polymers exhibit unique chemical and physical properties and high performance that are not observed with other organic polymers. They possess high thermal stability, high chemical stability, a low coefficient of friction, low adhesion, water and oil repellency, low refractive index, and outstanding electric insulation. In addition, there have recently been new expectations of selective permeability, piezoelectricity, and biocompatibility. [Pg.127]

Table VIII lists some of the more important physical properties of TeF4. In the orthorhombic crystals, each tellurium atom is surrounded by three terminal and two bridging fluorine atoms, arranged at the apices of a distorted square pyramid. The square-pyramidal units are linked by cis-bridging atoms into endless chains with a bridge angle of 159°. The nearest intermolecular contacts to the tellurium atom are 2.94 and 3.10 A, so that there are no other significant interactions. This geometry is in accordance with the steric activity of the lone electron pair at the tellurium atom. Figure 6 shows the atomic arrangement (54). Table VIII lists some of the more important physical properties of TeF4. In the orthorhombic crystals, each tellurium atom is surrounded by three terminal and two bridging fluorine atoms, arranged at the apices of a distorted square pyramid. The square-pyramidal units are linked by cis-bridging atoms into endless chains with a bridge angle of 159°. The nearest intermolecular contacts to the tellurium atom are 2.94 and 3.10 A, so that there are no other significant interactions. This geometry is in accordance with the steric activity of the lone electron pair at the tellurium atom. Figure 6 shows the atomic arrangement (54).
It is not the writer s intention to describe these compounds in any detail as they have not figured to any significant extent in the study of toxic fluorine compounds. We may note that these compounds are the analogues of the hydrocarbons and are of interest both because of their physical properties and because of their increasing industrial importance. [Pg.182]

Chemically they are extremely inert, being much more un-reactive even than the fluoroacetates. The inertness of the fluorocarbons and their nearly perfect physical properties arise from the strength of the F—C linkage and from their compact structure. The effective atomic radius of covalently bound fluorine is 0-64 A., which although greater than hydrogen (0-30) is smaller than other elements, e.g. Cl 0-99 A., Br 1-14 A. [Pg.182]

Perfluorinated alkanes and cycloalkanes are prepared from the corresponding hydrocarbons, either by electrochemical fluorination or by cobalt trifluoride fluo-rination [3], Many perfluorinated solvents are available commercially covering a wide selection of boiling points and densities. Some examples of perfluorinated solvents are listed in Table 3.1 together with their key physical properties. [Pg.58]

One surprising physical property of fluorine is its electron affinity which, at — 333 kJmol is lower than that of chlorine, —364 kJmol-1, indicating that the reaction X(g) + e - X (g) is more exothermic for chlorine atoms. In view of the greater reactivity of fluorine a much higher electron affinity might reasonably have been expected. The explanation of this anomaly is found when the steps involved in a complete reaction are considered. For example, with a Group I metal ion M+(g) the steps to form a crystalline solid are,... [Pg.313]


See other pages where Fluorine physical properties is mentioned: [Pg.150]    [Pg.122]    [Pg.178]    [Pg.210]    [Pg.210]    [Pg.271]    [Pg.283]    [Pg.289]    [Pg.195]    [Pg.150]    [Pg.442]    [Pg.737]    [Pg.54]    [Pg.97]    [Pg.79]    [Pg.597]    [Pg.759]    [Pg.28]    [Pg.227]    [Pg.459]    [Pg.27]    [Pg.214]    [Pg.115]    [Pg.371]    [Pg.371]    [Pg.449]    [Pg.684]    [Pg.307]    [Pg.1]   
See also in sourсe #XX -- [ Pg.915 ]

See also in sourсe #XX -- [ Pg.394 ]

See also in sourсe #XX -- [ Pg.5 ]

See also in sourсe #XX -- [ Pg.472 , Pg.878 , Pg.879 , Pg.880 , Pg.883 , Pg.884 , Pg.887 ]

See also in sourсe #XX -- [ Pg.134 ]

See also in sourсe #XX -- [ Pg.134 ]

See also in sourсe #XX -- [ Pg.919 , Pg.920 ]

See also in sourсe #XX -- [ Pg.26 , Pg.43 , Pg.164 , Pg.164 , Pg.196 , Pg.537 , Pg.1014 , Pg.1015 , Pg.1016 , Pg.1019 , Pg.1020 ]

See also in sourсe #XX -- [ Pg.1075 ]

See also in sourсe #XX -- [ Pg.26 , Pg.44 , Pg.188 , Pg.188 , Pg.224 , Pg.596 , Pg.1127 , Pg.1128 , Pg.1129 , Pg.1132 , Pg.1133 ]

See also in sourсe #XX -- [ Pg.123 ]




SEARCH



Fluorine properties

Some physical properties of organic fluorine compounds

© 2024 chempedia.info