Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fluorescence, continued

An important issue is the observation of what appear as inner droplets in Figure 3.9a and c that do not fluoresce (continuous line in Figure 3.9b and d). As no fluorescence is detected anymore, it means that these droplets are free of water and are therefore just the remaining prints of the expelled aqueous droplets. As TEOS is hydrophobic, it has diffused through the wax layer and has... [Pg.82]

Romey, M., et al. (2012). Use of an intravascular fluorescent continuous glucose sensor in subjects with type 1 diabetes mellitus (Translated from English). Journal of Diabetes Science and Technology, 6(6), 1260-1266 (in English). [Pg.295]

Purification of anthracene. Dissolve 0-3 g. of crude anthracene (usually yellowish in colour) in 160-200 ml. of hexane, and pass the solution through a column of activated alumina (1 5-2 X 8-10 cm.). Develop the chromatogram with 100 ml. of hexane. Examine the column in the hght of an ultra-violet lamp. A narrow, deep blue fluorescent zone (due to carbazole, m.p. 238°) will be seen near the top of the column. Immediately below this there is a yellow, non-fluorescent zone, due to naphthacene (m.p. 337°). The anthracene forms a broad, blue-violet fluorescent zone in the lower part of the column. Continue the development with hexane until fluorescent material commences to pass into the filtrate. Reject the first runnings which contain soluble impurities and yield a paraffin-hke substance upon evaporation. Now elute the column with hexane-benzene (1 1) until the yellow zone reaches the bottom region of the column. Upon concentration of the filtrate, pure anthracene, m.p. 215-216°, which is fluorescent in dayhght, is obtained. The experiment may be repeated several times in order to obtain a moderate quantity of material. [Pg.944]

TABLE 7.16 Fluorescence Spectroscopy of Some Organic Compounds Continued)... [Pg.715]

Concerns over safe handling of radioactive materials and issues around the cost and disposal of low level radioactive waste has stimulated the development of nonradiometric products and technologies with the aim of replacing radioactive tracers in research and medical diagnosis (25). However, for many of the appHcations described, radioactive tracer technology is expected to continue to be widely used because of its sensitivity and specificity when compared with colorimetric, fluorescent, or chemiluminescent detection methods. [Pg.440]

To measure a residence-time distribution, a pulse of tagged feed is inserted into a continuous mill and the effluent is sampled on a schedule. If it is a dry miU, a soluble tracer such as salt or dye may be used and the samples analyzed conductimetricaUy or colorimetricaUy. If it is a wet mill, the tracer must be a solid of similar density to the ore. Materials hke copper concentrate, chrome brick, or barites have been used as tracers and analyzed by X-ray fluorescence. To plot results in log-normal coordinates, the concentration data must first be normalized from the form of Fig. 20-15 to the form of cumulative percent discharged, as in Fig. 20-16. For this, one must either know the total amount of pulse fed or determine it by a simple numerical integration... [Pg.1837]

EPA Method 6C is the instrumental analyzer procedure used to determine sulfur dioxide emissions from stationaiy sources (see Fig. 25-30). An integrated continuous gas sample is extracted from the test location, and a portion of the sample is conveyed to an instrumental analyzer for determination of SO9 gas concentration using an ultraviolet ( UV), nondispersive infrared (NDIR), or fluorescence analyzer. The sample gas is conditioned prior to introduction to the gas analyzer by removing particulate matter and moisture. Sampling is conducted at a constant rate for the entire test rim. [Pg.2200]

Atomic Fluorescence System - Millennium Excalibur PSA 10.055 -was used in our work. This system consists of the autosampler, the integrated continuous flow vapour generator and the atomic fluorescence spectrometer with the boosted dischar ge hollow cathode lamp and a control computer. [Pg.208]

X-RAY FLUORESCENCE INTENSITY ELEMENTS OE MULTICOMPONENT POWDER MATERIAL WITH CONTINUOUS GRAIN SIZE DISTRIBUTION OE COMPONENTS... [Pg.462]

The continuous methods combine sample collection and the measurement technique in one automated process. The measurement methods used for continuous analyzers include conductometric, colorimetric, coulometric, and amperometric techniques for the determination of SO2 collected in a liquid medium (7). Other continuous methods utilize physicochemical techniques for detection of SO2 in a gas stream. These include flame photometric detection (described earlier) and fluorescence spectroscopy (8). Instruments based on all of these principles are available which meet standard performance specifications. [Pg.201]

The X-ray spectrum observed in PIXE depends on the occurrence of several processes in the specimen. An ion is slowed by small inelastic scatterings with the electrons of the material, and it s energy is continuously reduced as a frmction of depth (see also the articles on RBS and ERS, where this part of the process is identical). The probability of ionizii an atomic shell of an element at a given depth of the material is proportional to the product of the cross section for subshell ionization by the ion at the reduced energy, the fluorescence yield, and the concentration of the element at the depth. The probability for X-ray emission from the ionized subshell is given by the fluorescence yield. The escape of X rays from the specimen and their detection by the spectrometer are controlled by the photoelectric absorption processes in the material and the energy-dependent efficiency of the spectrometer. [Pg.358]

A continuous source has to be employed to record absorption spectra. Fluorescence is usually excited with mercury vapor lamps in the region of their major bands they radiate more powerfully than do xenon lamps (Fig. 14). [Pg.20]

Indeed, great emphasis was placed on the presentation of compounds in crystalline form for many years, early chromatographic procedures for the separation of natural substances were criticized because the products were not crystalline. None the less, the invention by Tswett (3) of chromatographic separation by continuous adsorption/desorption on open columns as applied to plant extracts was taken up by a number of natural product researchers in the 1930s, notably by Karrer (4) and by Swab and lockers (5). An early example (6) of hyphenation was the use of fluorescence spectroscopy to identify benzo[a]pyrene separated from shale oil by adsorption chromatography on alumina. [Pg.3]


See other pages where Fluorescence, continued is mentioned: [Pg.287]    [Pg.11]    [Pg.502]    [Pg.2056]    [Pg.376]    [Pg.460]    [Pg.249]    [Pg.287]    [Pg.11]    [Pg.502]    [Pg.2056]    [Pg.376]    [Pg.460]    [Pg.249]    [Pg.308]    [Pg.948]    [Pg.38]    [Pg.392]    [Pg.78]    [Pg.288]    [Pg.301]    [Pg.388]    [Pg.395]    [Pg.316]    [Pg.319]    [Pg.224]    [Pg.382]    [Pg.410]    [Pg.371]    [Pg.134]    [Pg.462]    [Pg.431]    [Pg.625]    [Pg.228]    [Pg.283]    [Pg.208]    [Pg.637]   


SEARCH



Atomic fluorescence continuous sources

Fluorescence, continued single atom

Fluorescence, continued time-resolved

© 2024 chempedia.info