Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Flow pattern selection

If the bulk solid s characteristics are such that a mass flow pattern is not required, a funnel flow bin should be designed. Not only will this save on headroom and maximise storage volume for a given headroom, it will also minimise the effects of sliding abrasion on the bin walls. [Pg.85]

An expanded flow bin should be designed if partial mass flow is acceptable in terms of the bulk solid s properties and, as a general mle of thumb, the cylinder diameter is greater than about 6 m. [Pg.85]


Several sophisticated techniques and data analysis methodologies have been developed to measure the RTD of industrial reactors (see, for example, Shinnar, 1987). Various different types of models have been developed to interpret RTD data and to use it further to predict the influence of non-ideal behavior on reactor performance (Wen and Fan, 1975). Most of these models use ideal reactors as the building blocks (except the axial dispersion model). Combinations of these ideal reactors with or without by-pass and recycle are used to simulate observed RTD data. To select an appropriate model for a reactor, the actual flow pattern and its dependence on reactor hardware and operating protocol must be known. In the absence of detailed quantitative models to predict the flow patterns, selection of a model is often carried out based on a qualitative understanding of flow patterns and an analysis of observed RTD data. It must be remembered that more than one model may fit the observed RTD data. A general philosophy is to select the simplest model which adequately represents the physical phenomena occurring in the actual reactor. [Pg.13]

In the contacting flow pattern selection tree (Fig. 7), we choose only those branches where the solids phase is in plug flow because of our desire to reduce the reactor volume requirements (Wish 3). There is a further factor that needs to be taken into account. The oil vapor that is formed during the process is in contact with other hot shale particles within the reactor, and the chance of further degradation of this oil increases with the gas phase residence time (c/. Fig. 5). Wilkins et al. (1981) have studied the oil vapor degradation kinetics, and calculations based on their kinetics... [Pg.212]

Fresh butane mixed with recycled gas encounters freshly oxidized catalyst at the bottom of the transport-bed reactor and is oxidized to maleic anhydride and CO during its passage up the reactor. Catalyst densities (80 160 kg/m ) in the transport-bed reactor are substantially lower than the catalyst density in a typical fluidized-bed reactor (480 640 kg/m ) (109). The gas flow pattern in the riser is nearly plug flow which avoids the negative effect of backmixing on reaction selectivity. Reduced catalyst is separated from the reaction products by cyclones and is further stripped of products and reactants in a separate stripping vessel. The reduced catalyst is reoxidized in a separate fluidized-bed oxidizer where the exothermic heat of reaction is removed by steam cods. The rate of reoxidation of the VPO catalyst is slower than the rate of oxidation of butane, and consequently residence times are longer in the oxidizer than in the transport-bed reactor. [Pg.457]

Distributors in industrial units typically have large numbers of injection points of quite diverse design characteristics, some of which are depicted in Eigure 16 for fluidized-bed appHcations. Flow variations through these parallel paths can lead to poor flow distributions within a reactor, thus reducing product yields and selectivity. In some circumstances, undesirable side products can foul portions of the distributor and further upset flow patterns. Where this is important, or where the possibiHties and consequences are insufficiently understood and independent means caimot be employed to assure adequate distribution, the pilot plant must be sized to accommodate such a distributor. Spacing should be comparable to those distributors that are anticipated to be... [Pg.519]

TABLE 14-5 Selection of Cross-Flow-Plate Flow Pattern ... [Pg.1370]

Table 7-4 shows flow patterns and applications of some commercially available impellers. Generally, the axial flow pattern is most suitable for flow sensitive operation such as blending, heat transfer, and solids suspension, while the radial flow pattern is ideal for dispersion operations that require higher shear levels than are provided by axial flow impellers. Myers et al. [5] have described a selection of impellers with applications. Further details on selection are provided by Uhl and Gray [6], Gates et al. [7], Hicks et al. [8] and Dickey [9]. [Pg.566]

A large one-sixth-scale model of the unloader hopper was selected so that flow patterns in the enclosure could be evaluated.Smoke was used to simulate the behavior of the lime dust in the enclosure. The lime drop from the clamshell was simulated by releasing coarse sand, thus modeling the flow patterns caused by the volume displacement and the air entrainment. The effects of local wind speed and direction on the enclosure were also simulated. [Pg.908]

The latest tw o-phase flow research and design studies have broadened the interpretation of some of the earlier flow patterns and refined some design accuracy for selected situations. The method presented here serves as a fundamental reference source for further studies. It is suggested that the designer compare several design concept results and interpret which best encompasses the design problem under consideration. Some of the latest references are included in the Reference Section. No one reference has a solution to all two-phase flow problems. [Pg.124]

Significant Features in Reciprocating Pump Arrangements, 215 Performance, 217 Discharge Flow Patterns, 218 Horsepower, 218 Pump Selection, 221. [Pg.642]

Mixers, range of operation, 289 Chart to examine types, 296 Draft tubes, 309. 313 Flow patterns, 291 Jet, 325, 326 Selection guide, 289 Mixing applications, 288 Blending, 300 Gas dispersion, 325 Motion, 300... [Pg.628]

Clearly, the flow pattern established in a mixing vessel depends critically upon the vessel/impeller configuration and on the physical properties of the liquid (particularly viscosity). In selecting the appropriate combination of equipment, it must be ensured that the resulting flow pattern is suitable for the required application. [Pg.298]

To establish the well drainage boundaries and fluid flow patterns within the TFSA-waterflood pilot, an interwell chemical tracer study was conducted. Sodium thiocyanate was selected as the tracer on the basis of its low adsorption characteristics on reservoir rocks (36-38), its low and constant background concentration (0.9 mg/kg) in produced fluids and its ease and accuracy of analysis(39). On July 8, 1986, 500 lb (227 kg) of sodium thiocyanate dissolved in 500 gal (1.89 m3> of injection brine (76700 mg/kg of thiocyanate ion) were injected into Well TU-120. For the next five months, samples of produced fluids were obtained three times per week from each production well. The thiocyanate concentration in the produced brine samples were analyzed in duplicate by the standard ferric nitrate method(39) and in all cases, the precision of the thiocyanate determinations were within 0.3 mg/kg. The concentration of the ion in the produced brine returned to background levels when the sampling and analysis was concluded. [Pg.582]

The shape of the instantaneous yield curve determines the optimum reactor configuration and flow pattern for a particular reaction network. For cases where the instantaneous yield increases continuously with increasing reactant concentration, the optimum reactor configuration from a product selectivity viewpoint is a... [Pg.322]

In a typical pulse experiment, a pulse of known size, shape and composition is introduced to a reactor, preferably one with a simple flow pattern, either plug flow or well mixed. The response to the perturbation is then measured behind the reactor. A thermal conductivity detector can be used to compare the shape of the peaks before and after the reactor. This is usually done in the case of non-reacting systems, and moment analysis of the response curve can give information on diffusivities, mass transfer coefficients and adsorption constants. The typical pulse experiment in a reacting system traditionally uses GC analysis by leading the effluent from the reactor directly into a gas chromatographic column. This method yields conversions and selectivities for the total pulse, the time coordinate is lost. [Pg.240]

The selection of a specific fuel cell pressure will affect numerous design parameters and considerations such as the current collector width, gas flow pattern, pressure vessel size, pipe and insulation size, blower size and design, compressor auxiliary load, and the selection of a bottoming cycle and its operating conditions. [Pg.231]

The experimental strategy in studying catalytic kinetics usually involves measuring the extent of conversion of gas passing in steady flow through a batch of solids. Any flow pattern can be used, as long as the pattern selected is known if it is not known then the kinetics cannot be found. A batch reactor can also be used. In turn we discuss the following experimental devices ... [Pg.396]

As mentioned earlier, obtaining and interpreting the actual experimental flow pattern is usually impractical. Hence, the approach taken is to postulate a flow model which reasonably approximates real flow, and then use this flow model for predictive purposes. Naturally, if a flow model closely reflects a real situation, its predicted response curves will closely match the tracer-response curve of the real vessel this is one of the requirements in selecting a satisfactory model. [Pg.104]


See other pages where Flow pattern selection is mentioned: [Pg.85]    [Pg.85]    [Pg.47]    [Pg.511]    [Pg.515]    [Pg.409]    [Pg.1370]    [Pg.207]    [Pg.121]    [Pg.122]    [Pg.27]    [Pg.762]    [Pg.252]    [Pg.449]    [Pg.488]    [Pg.630]    [Pg.29]    [Pg.277]    [Pg.469]    [Pg.201]    [Pg.563]    [Pg.583]    [Pg.197]    [Pg.368]    [Pg.354]    [Pg.52]    [Pg.684]    [Pg.319]    [Pg.374]   


SEARCH



Flow patterns

Selectivity pattern

© 2024 chempedia.info