Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Flavin adenine dinucleotide , reactions

Direct hydroxylation of an aromatic ring to yield a hydroxybenzene (a phenol) is difficult and rarely done in the laboratory., but occurs much more frequently in biological pathways. An example is the hydroxylation of p-hydroxyphenyl acetate to give 3,4-dihydroxyphenyl acetate. The reaction is catalyzed by p-hydroxyphenylacctate-3-hydroxylase and requires molecular oxygen plus the coenzyme reduced flavin adenine dinucleotide, abbreviated FADH2. [Pg.553]

Flavin Adenine Dinucleotide (FAD) (C27 H33 N9 O15P2) is a coenzyme that acts as a hydrogen acceptor in dehydrogenation reactions in an oxidized or reduced form. FAD is one of the primary cofactors in biological redox reactions. [Pg.507]

Riboflavin fulfills its role in metabolism as the coenzymes flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) (Figure 45-10). FMN is formed by ATP-dependent phosphorylation of riboflavin, whereas FAD is synthesized by further reaction of FMN with ATP in which its AMP moiety is transferred to the... [Pg.489]

XOD is one of the most complex flavoproteins and is composed of two identical and catalytically independent subunits each subunit contains one molybdenium center, two iron sulfur centers, and flavine adenine dinucleotide. The enzyme activity is due to a complicated interaction of FAD, molybdenium, iron, and labile sulfur moieties at or near the active site [260], It can be used to detect xanthine and hypoxanthine by immobilizing xanthine oxidase on a glassy carbon paste electrode [261], The elements are based on the chronoamperometric monitoring of the current that occurs due to the oxidation of the hydrogen peroxide which liberates during the enzymatic reaction. The biosensor showed linear dependence in the concentration range between 5.0 X 10 7 and 4.0 X 10-5M for xanthine and 2.0 X 10 5 and 8.0 X 10 5M for hypoxanthine, respectively. The detection limit values were estimated as 1.0 X 10 7 M for xanthine and 5.3 X 10-6M for hypoxanthine, respectively. Li used DNA to embed xanthine oxidase and obtained the electrochemical response of FAD and molybdenum center of xanthine oxidase [262], Moreover, the enzyme keeps its native catalytic activity to hypoxanthine in the DNA film. So the biosensor for hypoxanthine can be based on... [Pg.591]

Most coenzymes have aromatic heterocycles as major constituents. While enzymes possess purely protein structures, coenzymes incorporate non-amino acid moieties, most of them aromatic nitrogen het-erocycles. Coenzymes are essential for the redox biochemical transformations, e.g., nicotinamide adenine dinucleotide (NAD, 13) and flavin adenine dinucleotide (FAD, 14) (Scheme 5). Both are hydrogen transporters through their tautomeric forms that allow hydrogen uptake at the termini of the quinon-oid chain. Thiamine pyrophosphate (15) is a coenzyme that assists the decarboxylation of pyruvic acid, a very important biologic reaction (Scheme 6). [Pg.3]

Physiologic electron acceptors flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) produced similar effects on cathodic hydrogen evolution from mild steel as achieved with methyl viologen (Bryant and Laishley 1990). These experimental results showed that the mild steel rods reacting with phosphate can preferential act as electron donors for the reduction of low-potential electron carriers. All hydrogenases catalyze a reversible reaction for the formation and oxidation of hydrogen, which requires low-potential electron carriers for the enzyme activity (Church et al. 1988 Fauque et al. 1988). [Pg.254]

The relaxation approach has played an important role in our understanding of the mechanisms of complex formation in solution (Chap. 4) 39,i4o -pjjg qj computer programs has now eased the study of multiple equilibria. For example, four separate relaxation effects with t s ranging from 100 xs to 35 ms are observed in a temperature-jump study of the reactions of Ni with flavin adenine dinucleotide (fad) (Eqn. (8.121)). The complex relaxation... [Pg.36]

The flavin-based coenzymes flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) are associated with a wide variety of enzymes that catalyze reactions in critical biosynthetic and catabolic processes (Fig. 16). Unlike other coenzymes, the reactions catalyzed do not conserve specific mechanistic pathways. In each case the apoenzyme serves to steer the course of the reaction through specific interactions with substrate and coenzyme [55]. Nonetheless, there are common features of the interactions of the apoenzymes with the flavin which can be exploited in the design of functional peptides and proteins. [Pg.23]

So what does riboflavin do As such riboflavin does nothing. Like thiamine, riboflavin must undergo metabolic change to become effective as a coenzyme. It fact, it undergoes two reactions. The first converts riboflavin to riboflavin-5-phosphate (commonly known as flavin adenine mononucleotide, FMN), about which we will say no more, and the second converts it to flavin adenine dinucleotide, FAD. The flavins are a class of redox agents of very general importance in biochemistry. FAD is the oxidized form and FADH2 is the reduced form. ... [Pg.201]

Riboflavin (vitamin B2) is a component of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), coenzymes that play a major role in oxidation-reduction reactions (see Section 15.1.1). Many key enzymes involved in metabolic pathways are actually covalently bound to riboflavin, and are thus termed flavoproteins. [Pg.455]

Riboflavin is the redox component of flavin adenine dinucleotide FAD. It is derived from FAD by hydrolysis of a phosphate ester link. The fully oxidised form of FAD is involved in many dehydrogenaze reactions during which it is converted to the fully reduced form. The fully oxidised state is restored either by another redox enzyme or by interaction with oxygen and hydrogen peroxide is liberated. The one-electron reduced, semiquinone form of FAD, is involved in some electron transfer steps. [Pg.253]

Riboflavin (vitamin Bj) is chemically specified as a 7,8-dimethyl-10-(T-D-ribityl) isoalloxazine (Eignre 19.22). It is a precnrsor of certain essential coenzymes, such as flavin mononucleotide (FMN) and flavin-adenine dinucleotide (FAD) in these forms vitamin Bj is involved in redox reactions, such as hydroxylations, oxidative carboxylations, dioxygenations, and the reduction of oxygen to hydrogen peroxide. It is also involved in the biosynthesis of niacin-containing coenzymes from tryptophan. [Pg.635]

It carries its physiological function in its active forms, flavin mononucleotide (FMN) and flavin adenine dinucleotide. These coenzymes are involved in various biochemical reactions. [Pg.387]

Riboflavin (vitamin B2 6.18) consists of an isoalloxazine ring linked to an alcohol derived from ribose. The ribose side chain of riboflavin can be modified by the formation of a phosphoester (forming flavin mononucleotide, FMN, 6.19). FMN can be joined to adenine monophosphate to form flavin adenine dinucleotide (FAD, 6.20). FMN and FAD act as co-enzymes by accepting or donating two hydrogen atoms and thus are involved in redox reactions. Flavoprotein enzymes are involved in many metabolic pathways. Riboflavin is a yellow-green fluorescent compound and, in addition to its role as a vitamin, it is responsible for the colour of milk serum (Chapter 11). [Pg.196]

Babior, who has studied this enzyme at several stages of its purification, found in lysates of PMNs which were activated with zymosan that of eight potential biological reductants only reduced pyridine nucleotides supported the formation of O ". The K , for NADPH was less than the K , for NADH and the activity was decreased in preparations from three patients with chronic granulomatous disease. In accord with predictions based on reaction 7, 0.55 molecule of O7 was measured per molecule of NADPH oxidized under conditions of saturating concentrations of cytochrome c The enzyme which was extracted with Triton X-100 from a granule-rich fraction from activated PMNs, required an external source of FAD for the formation of O from NADPH . Riboflavin and FMN would not substitute. Flavin adenine dinucleotide was proposed as a necessary cofactor, which was probably lost when the enzyme was treated with the detergent. [Pg.51]

Synthesis of NO Arginine, 02, and NADPH are substrates for cytosolic NO synthase (Figure 13.9). Flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD), heme, and tetrahydro- biopterin are coenzymes for the enzyme, and NO and citrulline are products of the reaction. Three NO synthases have been identified. Two are constitutive (synthesized at a constant rate regardless of physiologic demand), Ca2+-calmodulin-dependent enzymes. They are found primarily in endothelium (eNOS), and neural tissue... [Pg.148]

This reaction is a good example of the interrelationship of vitamin B coenzymes. Four vitamin coenzymes are necessary for this one reaction (1) thiamine (in TPP) for decarboxylation (2) nicotinic acid in nicotinamide adenine dinucleotide (NAD) (3) riboflavin in flavin adenine dinucleotide (FAD) and (4) pantothenic acid in coenzyme A (CoA) for activation of die acetate fragment. [Pg.1610]


See other pages where Flavin adenine dinucleotide , reactions is mentioned: [Pg.176]    [Pg.40]    [Pg.45]    [Pg.26]    [Pg.44]    [Pg.591]    [Pg.808]    [Pg.371]    [Pg.922]    [Pg.20]    [Pg.157]    [Pg.201]    [Pg.250]    [Pg.572]    [Pg.567]    [Pg.569]    [Pg.79]    [Pg.45]    [Pg.148]    [Pg.197]    [Pg.36]    [Pg.576]    [Pg.190]    [Pg.79]    [Pg.151]    [Pg.417]    [Pg.97]    [Pg.87]    [Pg.515]    [Pg.73]    [Pg.417]    [Pg.455]   


SEARCH



Adenine reactions

Dinucleotide

Flavin adenine

Flavin adenine dinucleotide

Flavine adenine dinucleotide

Flavines

Flavins

© 2024 chempedia.info