Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Flavin adenine dinucleotide function

Metal ions play an important role in nitrate reduction. The discovery and characterization of the pyridine nucleotide enzymes involved in nitrate reduction (20AI8,20A65,20A81, 20A83) made it possible to understand the role of mineral ions in the nitrate reduction processes. Reduced pyridine nucleotides and flavin adenine dinucleotide function as cofactors in reduction of nitrate, nitrite, hyponitrate, and hydroxylam-ine. The first step of the reaction involves the reduction of nitrate to nitrite, and Mo is essential for this reaction. The reduction of nitrite to hyponitrite and hyponitrite to hydroxy-lamine requires Cu and Fe ions (20A20). [Pg.910]

Glucose oxidase (GOD) is a typical flavin enzyme with flavin adenine dinucleotide (FAD) as redox prosthetic group. Its biological function is to catalyze glucose to form gluconolaction, while the enzyme itself is turned from GOD(FAD) to GOD(FADH2). GOD was used to prepare biosensors in extensive fields. Many materials that can be used to immobilize other proteins can be suitable for GOD. GOD adsorbed on CdS nanoparticles maintained its bioactivity and structure, and could electrocatalyze... [Pg.588]

The flavin-based coenzymes flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) are associated with a wide variety of enzymes that catalyze reactions in critical biosynthetic and catabolic processes (Fig. 16). Unlike other coenzymes, the reactions catalyzed do not conserve specific mechanistic pathways. In each case the apoenzyme serves to steer the course of the reaction through specific interactions with substrate and coenzyme [55]. Nonetheless, there are common features of the interactions of the apoenzymes with the flavin which can be exploited in the design of functional peptides and proteins. [Pg.23]

Amine oxidases catalyze the oxidative deamination of both xenobiotic and biogenic amines, and thus have many critical biological functions. Two distinct classes differ in the nature of their prosthetic groups [1]. The flavin-(FAD flavin adenine dinucleotide)-dependent amine oxidases include monoamine oxidases (MAO A and B) and polyamine oxidases. Amine oxidases not containing FAD, the so-called semicarbazide-sensitive amine oxidases (SSAO), include both plasma amine oxidases and tissue amine oxidases. These contain quinonoid structures as redox cofactors that are derived from posttranslationally modified tyrosine or tryptophan side chains, topaoquinone frequently playing this role [2]. [Pg.662]

It carries its physiological function in its active forms, flavin mononucleotide (FMN) and flavin adenine dinucleotide. These coenzymes are involved in various biochemical reactions. [Pg.387]

Au NPs (1.2 nm) that include a single /V-hydroxysuccinimide-active ester functionality were modified with 2-amino-ethyl-flavin adenine dinucleotide, (5), and apo-glucose oxidase was reconstituted on the FAD cofactor units to yield the Au NP-GOx hybrid (Fig. 12.6a). The resulting hybrids were linked to the Au surface by different dithiol bridging units (8), (9), and (10). The resulting NP-functionalized glucose oxidase, GOx, exhibited electrical contact with the electrode surface, and the Au NPs... [Pg.341]

The C-terminal portion of the NOS protein closely resembles to cytochrome P-450 reductase, possesses many of the same cofactor binding sites, and basically performs the same functions. Consequently, this portion is often referred to as the reductase domain. At the extreme C-terminus is an NADPH binding region, which is conserved in all NOS and aligns perfectly with that of cytochrome P-450 reductase. The NADPH binding site is followed, in turn, by flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) consensus sequences. [Pg.557]

Flavin adenine dinucleotide (FAD) (fig. 10.8) and flavin mononucleotide (FMN) are the coenzymatically active forms of vitamin B2, riboflavin. Riboflavin is the NI0-ribityl isoalloxazine portion of FAD, which is enzymatically converted into its coenzymatic forms first by phosphorylation of the ribityl C-5 hydroxy group to FMN and then by ade-nylylation to FAD. FMN and FAD are functionally equivalent coenzymes, and the one that is involved with a given enzyme appears to be a matter of enzymatic binding specificity. [Pg.207]

A model of a flavin-based redox enzyme was prepared.[15] Redox enzymes are often flavoproteins containing flavin cofactors flavin adenine dinucleotide (FAD) or flavin mononucleotide (FMN). They mediate one- or two-electron redox processes at potentials which vary in a range of more than 500 mV. The redox properties of the flavin part must be therefore tuned by the apoenzyme to ensure the specific function of the enzyme. Influence by hydrogen bonding, aromatic stacking, dipole interactions and steric effects have been so far observed in biological systems, but coordination to metal site has never been found before. Nevertheless, the importance of such interactions for functions and structure of other biological molecules make this a conceivable scenario. [Pg.97]

Two different enzyme systems have been described, one uses cytochrome P-450 to activate oxygen whereas the other employs flavin adenine dinucleotide (FAD). Both the cytochrome P-450 and the flavin monooxygenase systems have broad substrate specificities and oxidize and oxygenate a variety of organic nitrogen or sulfur compounds. The enzymes have a widespread distribution and have been detected in animals, plants, fungi and bacteria. Their function appears to be primarily one of detoxification of xenobiotics. Microbial enzymes... [Pg.214]

Subsequently, the functions of the vitamin were better established and requirements for the vitamin were set. Riboflavin is an Integral part of two coenzymes, flavin-5 -phosphate (FMN) and flavin adenine dinucleotide (FAD), which function in oxidation/reductlon reactions. Indeed, riboflavin is an enzyme cofactor which is necessary in metabolic processes in which oxidation of glucose or fatty acid is used for production of adenosine triphosphate (ATP) as well as in reactions in which oxidation of amino acids is accomplished. The minimum requirement for riboflavin has been established as that amount which actually prevents the signs of deficiency. A range of intakes varying from 0.55 to 0.75 mg/day of riboflavin has been established as the minimum amount which is required to prevent appearance of deficiency signs. [Pg.80]

Enzymatic cofactors, such as nicotinamide adenine dinucleotide (NADH), nicotinamide adenine dinucleotide phosphate (NADPH), flavin adenine dinucleotide (EAD), flavin mononucleotide (EMN), and pyridoxal phosphate, are fluorescent and commonly found associated with various proteins where they are responsible for electron transport (see Fig. lb and Table 1). NADH and NADPH in the oxidized form are nonfluorescent, whereas conversely the flavins, FAD and EMN, are fluorescent only in the oxidized form. Both NADH and FAD fluorescence is quenched by the adenine found within their cofactor structures, whereas NADH-based cofactors generally remain fluorescent when interacting with protein structures. The fluorescence of these cofactors is often used to study the cofactors interaction with proteins as well as with related enzymatic kinetics (1, 9-12). However, their complex fluorescent characteristics have not led to widespread applications beyond their own intrinsic function. [Pg.527]

In higher mammals, riboflavin is absorbed readily from the intestines and distributed to all tis.sues. It is the precursor in the biosynthesis of the cocnzyme.s flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). The metabolic functions of this vitamin involve these Iwocoenzymes. which participate in numerous vital oxidation-reduction proces.ses. FMN (riboflavin 5 -phosphate) is produced from the vitamin and ATP by flavokinasc catalysis. This step con be inhibited by phcnothiazincs and the tricyclic antidepressants. FAD originates from an FMN and ATP reaction that involves reversible dinucicotide formation catalyzed by flavin nucleotide pyrophosphorylase. The.se coenzymes function in combination with several enzymes as coenzyme-en-zyme complexes, often characterized as, flavoproteins. [Pg.890]

Whereas redox reactions on metal centres usually only involve electron transfers, many oxidation/reduction reactions in intermediary metabolism, as in the case above, involve not only electron transfer, but hydrogen transfer as well — hence the frequently used denomination dehydrogenase . Note that most of these dehydrogenase reactions are reversible. Redox reactions in biosynthetic pathways usually use NADPH as their source of electrons. In addition to NAD and NADP+, which intervene in redox reactions involving oxygen functions, other cofactors like riboflavin (in the form of flavin mononucleotide, FMN, and flavin adenine dinucleotide, FAD) (Figure 5.3) participate in the conversion of [—CH2—CH2— to —CH=CH—], as well as in electron transfer chains. In addition, a number of other redox factors are found, e.g., lipoate in a-ketoacid dehydrogenases, and ubiquinone and its derivatives, in electron transfer chains. [Pg.92]

Xanthine oxidase, which is capable of catalyzing the conversion of hypoxanthine and xanthine to uric acid, was first detected in 1882 by Horbaczewski (Hll), who noted that extracts of various tissues could catalyze the conversion of xanthine to uric acid. A similar enzyme was detected in milk (M15). These enzymes contain a flavin-adenine dinucleotide prosthetic group (C9). As a result of the essential nature of the flavin-adenine dinucleotide portion of the enzjmie, a striking parallelism was seen between the riboflavin content of the diet and the xanthine oxidase concentration in tissues of growing rats (DIO). The enzyme contains molybdenum. That the molybdenum is contained in a functionally important component has been demonstrated by several workers (G13, T5). Totter and his associates injected labeled molybdate into a cow, and then isolated the enzyme from the milk to show that the proportion between the molybdenum and flavin remained constant at a value of 0.5. Corran et al. (C9) postulated that the xanthine oxidase of milk is identical with the xanthine oxidase of liver, but the protein portions of the enzyme appear to differ. [Pg.170]

The answer is b. (Murray, pp 627-661. Scriver, pp 3897-3964. Sack, pp 121-138. Wilson, pp 287-320.) Nicotinamide adenine dinucleotide (NAD+) is the functional coenzyme derivative of niacin. It is the major electron acceptor in the oxidation of molecules, generating NADH, which is the major electron donor for reduction reactions. Thiamine (also known as vitamin Bi) occurs functionally as thiamine pyrophosphate and is a coenzyme for enzymes such as pyruvate dehydrogenase. Riboflavin (vitamin B2) functions in the coenzyme forms of flavin mononucleotide (FMN) or flavin adenine dinucleotide (FAD). When concentrated, both have a yellow color due to the riboflavin they contain. Both function as prosthetic groups of oxidation-reduction enzymes or flavoproteins. Flavoproteins are active in selected oxidation reactions and in electron transport, but they do not have the ubiquitous role of NAD+. [Pg.265]

Figure 38. A, Circular dichroism spectra of -nicotinamide-adenine dinucleotide ( -NAD) as a function of temperature showing the reciprocity between the adenine band just below 260 nm and the nicotinamide band near 270 nm. These reciprocal relations in optical rotation qualitatively demonstrate a close interaction of the two aromatic rings. Reproduced, with permission, from [98]. B, Circular dichroism curves of flavin-adenine dinucleotide (FAD) as a function of water/dioxane mixtures. As the solvent becomes more polar, there is increased proximity of the two aromatic rings, as shown by the reciprocal changes in the intensity of the adenine band below 260 nm and the isoalloxazine band of flavin near 270 nm. Reproduced, with permission, from [99]. Figure 38. A, Circular dichroism spectra of -nicotinamide-adenine dinucleotide ( -NAD) as a function of temperature showing the reciprocity between the adenine band just below 260 nm and the nicotinamide band near 270 nm. These reciprocal relations in optical rotation qualitatively demonstrate a close interaction of the two aromatic rings. Reproduced, with permission, from [98]. B, Circular dichroism curves of flavin-adenine dinucleotide (FAD) as a function of water/dioxane mixtures. As the solvent becomes more polar, there is increased proximity of the two aromatic rings, as shown by the reciprocal changes in the intensity of the adenine band below 260 nm and the isoalloxazine band of flavin near 270 nm. Reproduced, with permission, from [99].

See other pages where Flavin adenine dinucleotide function is mentioned: [Pg.74]    [Pg.865]    [Pg.570]    [Pg.347]    [Pg.34]    [Pg.79]    [Pg.184]    [Pg.151]    [Pg.321]    [Pg.337]    [Pg.344]    [Pg.365]    [Pg.516]    [Pg.13]    [Pg.285]    [Pg.247]    [Pg.247]    [Pg.1272]    [Pg.20]    [Pg.865]    [Pg.2299]    [Pg.698]    [Pg.1736]    [Pg.899]    [Pg.480]    [Pg.230]    [Pg.241]    [Pg.33]    [Pg.260]    [Pg.42]    [Pg.313]    [Pg.1272]    [Pg.81]    [Pg.23]   
See also in sourсe #XX -- [ Pg.27 ]




SEARCH



Dinucleotide

Flavin adenine

Flavin adenine dinucleotide

Flavin adenine dinucleotide structure and function

Flavine adenine dinucleotide

Flavines

Flavins

© 2024 chempedia.info