Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Flavin adenine dinucleotide-dependent

Eppink MHM, SA Boeren, J Vervoort, WJH van Berkel (1997) Purification and properties of 4-hydroxybenzoate 1-hydroxylase (decarboxylating), a novel flavin adenine dinucleotide-dependent monooxygenase from Candida parapsilosis CBS604. J Bacterial 179 668-6687. [Pg.138]

Hajjar NP, Hodgson E. 1982. Sulfoxidation of thioether-containing pesticides by the flavin-adenine dinucleotide-dependent monooxygenase of pig liver microsomes. Biochem Pharmacol 31 745-752. [Pg.187]

Amine oxidases catalyze the oxidative deamination of both xenobiotic and biogenic amines, and thus have many critical biological functions. Two distinct classes differ in the nature of their prosthetic groups [1]. The flavin-(FAD flavin adenine dinucleotide)-dependent amine oxidases include monoamine oxidases (MAO A and B) and polyamine oxidases. Amine oxidases not containing FAD, the so-called semicarbazide-sensitive amine oxidases (SSAO), include both plasma amine oxidases and tissue amine oxidases. These contain quinonoid structures as redox cofactors that are derived from posttranslationally modified tyrosine or tryptophan side chains, topaoquinone frequently playing this role [2]. [Pg.662]

Methylene-Tetrahydrofolate Reductase The reduction of methylene-tetrahydrofolate to methyl-tetrahydrofolate, shown in Figure 10.7, is catalyzed hy methylene-tetrahydrofolate reductase, a flavin adenine dinucleotide-dependent enzyme during the reaction, the pteridine ring of the substrate is oxidized to dihydrofolate, then reduced to tetrahydrofolate by the flavin, which is reduced by nicotinamide adenine dinucleotide phosphate (NADPH Matthews and Daubner, 1982). The reaction is irreversible under physiological conditions, and methyl-tetrahydrofolate - which is the main form of folate taken up into tissues (Section 10.2.2) - can only be utilized after demethylation catalyzed by methionine synthetase (Section 10.3.4). [Pg.284]

Kurzban GP, Strobel HW (1986) Purification of flavin mononucleotide-dependent and flavin-adenine dinucleotide-dependent reduced nicotinamide-adenine dinucleotide phosphate-cytochrome P-450 reductase by high-performance liquid chromatography on hydroxyapatite. J Chromatogr 358 296-301... [Pg.62]

Riboflavin fulfills its role in metabolism as the coenzymes flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) (Figure 45-10). FMN is formed by ATP-dependent phosphorylation of riboflavin, whereas FAD is synthesized by further reaction of FMN with ATP in which its AMP moiety is transferred to the... [Pg.489]

XOD is one of the most complex flavoproteins and is composed of two identical and catalytically independent subunits each subunit contains one molybdenium center, two iron sulfur centers, and flavine adenine dinucleotide. The enzyme activity is due to a complicated interaction of FAD, molybdenium, iron, and labile sulfur moieties at or near the active site [260], It can be used to detect xanthine and hypoxanthine by immobilizing xanthine oxidase on a glassy carbon paste electrode [261], The elements are based on the chronoamperometric monitoring of the current that occurs due to the oxidation of the hydrogen peroxide which liberates during the enzymatic reaction. The biosensor showed linear dependence in the concentration range between 5.0 X 10 7 and 4.0 X 10-5M for xanthine and 2.0 X 10 5 and 8.0 X 10 5M for hypoxanthine, respectively. The detection limit values were estimated as 1.0 X 10 7 M for xanthine and 5.3 X 10-6M for hypoxanthine, respectively. Li used DNA to embed xanthine oxidase and obtained the electrochemical response of FAD and molybdenum center of xanthine oxidase [262], Moreover, the enzyme keeps its native catalytic activity to hypoxanthine in the DNA film. So the biosensor for hypoxanthine can be based on... [Pg.591]

Disulfoton causes neurological effects in humans and animals. The mechanism of action on the nervous system depends on the metabolism of disulfoton to active metabolites. The liver is the major site of metabolic oxidation of disulfoton to disulfoton sulfoxide, disulfoton sulfone, demeton S-sulfoxide and demeton S-sulfone, which inhibit acetylcholinesterase in nervous tissue. These four active metabolites are more potent inhibitors of acetylcholinesterase than disulfoton. Cytochrome P-450 monooxygenase and flavin adenine dinucleotide monooxygenase are involved in this metabolic activation. The active metabolites ultimately undergo nonenzymatic and/or enzymatic hydrolysis to more polar metabolites that are not toxic and are excreted in the urine. [Pg.90]

There are demethylases which act like amine oxidases that are dependent in their mechanism on their cosubstrate flavine adenine dinucleotide (FAD). So far, lysine-specific demethylase 1 (LSDl) is the only representative of this class [62]. LSDl, as an amine oxidase leads to oxidation of the methylated lysine residue, generating an imine intermediate, while the protein-bound cosubstrate FAD is reduced to FAD H2. In a second step, the imine intermediate is hydrolyzed to produce the demethylated histone lysine residue and formaldehyde. Importantly the reduced cosubstrate is regenerated to its oxidized form by molecular oxygen, producing hydrogen peroxide (Figure 5.7) [62, 63]. [Pg.111]

Synthesis of NO Arginine, 02, and NADPH are substrates for cytosolic NO synthase (Figure 13.9). Flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD), heme, and tetrahydro- biopterin are coenzymes for the enzyme, and NO and citrulline are products of the reaction. Three NO synthases have been identified. Two are constitutive (synthesized at a constant rate regardless of physiologic demand), Ca2+-calmodulin-dependent enzymes. They are found primarily in endothelium (eNOS), and neural tissue... [Pg.148]

Tissue also contains some endogenous species that exhibit fluorescence, such as aromatic amino acids present in proteins (phenylalanine, tyrosine, and tryptophan), pyridine nucleotide enzyme cofactors (e.g., oxidized nicotinamide adenine dinucleotide, NADH pyridoxal phosphate flavin adenine dinucleotide, FAD), and cross-links between the collagen and the elastin in extracellular matrix.100 These typically possess excitation maxima in the ultraviolet, short natural lifetimes, and low quantum yields (see Table 10.1 for examples), but their characteristics strongly depend on whether they are bound to proteins. Excitation of these molecules would elicit background emission that would contaminate the emission due to implanted sensors, resulting in baseline offsets or even major spectral shifts in extreme cases therefore, it is necessary to carefully select fluorophores for implants. It is also noteworthy that the lifetimes are fairly short, such that use of longer lifetime emitters in sensors would allow lifetime-resolved measurements to extract sensor emission from overriding tissue fluorescence. [Pg.299]

Conditions for cytosolic incubations depend on the aim of the assay e.g. to cover specific enzymatic activity present in the cytosol. For this purpose it is essential to fortify the incubation medium with the specific cofactor for the reaction-if needed (Ekins 1999). (J> -Nicotinamide adenine dinucleotide (NAD) is needed for alcohol and aldehyde dehydrogenases, flavin adenine dinucleotide (FAD) for polyamine oxidase, P-nicotinamide adenine dinucleotide phosphate (NADPH) for Dihydropyrimidine dehydrogenase. Phase II reactions depend on PAPS (sulfotransferases,... [Pg.515]

Aldehyde oxidase purified from maize coleoptiles is a multicomponent enzyme that contains a molybdenum cofactor, nonheme iron, and flavin adenine dinucleotide (FAD) as prosthetic groups.111 When substrate specificity of the aldehyde oxidase was tested, good activity was detected with IAAld, indole-3-aldehyde, and benzaldehyde among others. The addition of NADP and NADPH did not change the activity. In contrast, in maize endosperm, tryptophan-dependent IAA biosynthesis was dependent on an NADP/NADPH redox system, which may mean that the two tissues of maize are utilizing different pathways or different redox systems for IAA biosynthesis.112... [Pg.19]


See other pages where Flavin adenine dinucleotide-dependent is mentioned: [Pg.439]    [Pg.417]    [Pg.246]    [Pg.439]    [Pg.1414]    [Pg.1565]    [Pg.699]    [Pg.701]    [Pg.439]    [Pg.417]    [Pg.246]    [Pg.439]    [Pg.1414]    [Pg.1565]    [Pg.699]    [Pg.701]    [Pg.45]    [Pg.371]    [Pg.865]    [Pg.612]    [Pg.20]    [Pg.201]    [Pg.250]    [Pg.570]    [Pg.113]    [Pg.238]    [Pg.36]    [Pg.156]    [Pg.37]    [Pg.171]    [Pg.48]    [Pg.365]    [Pg.455]    [Pg.28]    [Pg.176]    [Pg.187]    [Pg.220]    [Pg.288]   


SEARCH



Dinucleotide

Flavin adenine

Flavin adenine dinucleotide

Flavin dependent

Flavine adenine dinucleotide

Flavines

Flavins

© 2024 chempedia.info