Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fischer mechanisms scheme

More than half a century ago it was observed that Re207 and Mo or W carbonyls immobilized on alumina or silica could catalyze the metathesis of propylene into ethylene and 2-butene, an equilibrium reaction. The reaction can be driven either way and it is 100% atom efficient. The introduction of metathesis-based industrial processes was considerably faster than the elucidation of the mechanistic fundamentals [103, 104]. Indeed the first process, the Phillips triolefin process (Scheme 5.55) that was used to convert excess propylene into ethylene and 2-butene, was shut down in 1972, one year after Chauvin proposed the mechanism (Scheme 5.54) that earned him the Nobel prize [105]. Starting with a metal carbene species as active catalyst a metallocyclobutane has to be formed. The Fischer-type metal carbenes known at the time did not catalyze the metathesis reaction but further evidence supporting the Chauvin mechanism was published. Once the Schrock-type metal carbenes became known this changed. In 1980 Schrock and coworkers reported tungsten carbene complexes... [Pg.258]

According to Micheel, osazone formation starts from an aldose and requires an Amadori rearrangement, so that his scheme may not account for the reaction in the ketose series. It may be concluded that the Fischer mechanism is not valid, and that further studies are needed in order to solve the problem of interaction between ketoses and substituted phenyl-hydrazines. [Pg.267]

Tertiary amine catalyzed reactions were also studied by Tanaka and Kakiuchi (8), who essentially supported the Fischer mechanism, but disagreed on the kinetic order. The copolymerization kinetic scheme proposed by both Fischer and Tanaka postulate three rates, R, R2, and R, as follows ... [Pg.276]

It was first observed by Woon (1974) and Farona (1974) that acetylenes could be polymerized by catalysts of the type Mo(CO)3(toluene). This was followed by the discovery that conventional metathesis catalysts such as M0CI5 (Masuda 1974) and WCls (Navarro 1976 Masuda 1976), with or without a cocatalyst, could also bring about polymerization of acetylenes. At first there was some doubt as to whether these polymerizations were being propagated by the metathesis mechanism (Scheme 10.2) or whether a Ziegler-Natta mechanism was operating. However, the observation that metal carbene complexes could react with acetylenic molecules to form simple adducts as in reaction (20) (Fischer, H. 1980), and the fact that such complexes could initiate the polymerization of acetylenes, albeit somewhat slowly, but cleanly and in fair yield, soon allayed these doubts. [Pg.200]

The mechanism of the Fischer indole synthesis has been extensively studied [11-38], and the accepted mechanism is shown in Scheme 1. The so-caUed abnormal Fischer indoli-zation (Scheme 2) has been studied by Ishii and Muiakani and their coworkers [39-44], and the interrupted Fischer indolization (Scheme 3) has been evaluated theoretically by Houk, Garg, and colleagues [38],... [Pg.41]

The [3S+1C] cycloaddition reaction with Fischer carbene complexes is a very unusual reaction pathway. In fact, only one example has been reported. This process involves the insertion of alkyl-derived chromium carbene complexes into the carbon-carbon a-bond of diphenylcyclopropenone to generate cyclobutenone derivatives [41] (Scheme 13). The mechanism of this transformation involves a CO dissociation followed by oxidative addition into the cyclopropenone carbon-carbon a-bond, affording a metalacyclopentenone derivative which undergoes reductive elimination to produce the final cyclobutenone derivatives. [Pg.71]

Fischer alkenylcarbene complexes undergo cyclopentannulation to alkenyl AT,AT-dimethylhydrazones (1-amino-1-azadienes) to furnish [3C+2S] substituted cyclopentenes in a regio- and diastereoselective way along with minor amounts of [4S+1C] pyrrole derivatives. Enantiopure carbene complexes derived from (-)-8-(2-naphthyl)menthol afford mixtures of trans,trans-cycloipentenes and ds,ds-cyclopentenes with excellent face selectivity [75]. The mechanism proposed for the formation of these cyclopentene derivatives is outlined in Scheme 28. The process is initiated by nucleophilic 1,2-attack of the carbon... [Pg.80]

The potential of Fischer carbene complexes in the construction of complex structures from simple starting materials is nicely reflected in the next example. Thus, the reaction of alkenylcarbene complexes of chromium and tungsten with cyclopentanone and cyclohexanone enamines allows the di-astereo- and enantioselective synthesis of functionalised bicyclo[3.2.1]octane and bicyclo[3.3.1]nonane derivatives [12] (Scheme 44). The mechanism of this transformation is initiated by a 1,4-addition of the C -enamine to the alkenylcarbene complex. Further 1,2-addition of the of the newly formed enamine to the carbene carbon leads to a metalate intermediate which can... [Pg.90]

S+3C] Heterocyclisations have been successfully effected starting from 4-amino-l-azadiene derivatives. The cycloaddition of reactive 4-amino-1-aza-1,3-butadienes towards alkenylcarbene complexes goes to completion in THF at a temperature as low as -40 °C to produce substituted 4,5-dihydro-3H-azepines in 52-91% yield [115] (Scheme 66). Monitoring the reaction by NMR allowed various intermediates to be determined and the reaction course outlined in Scheme 66 to be established. This mechanism features the following points in the chemistry of Fischer carbene complexes (i) the reaction is initiated at -78 °C by nucleophilic 1,2-addition and (ii) the key step cyclisation is triggered by a [l,2]-W(CO)5 shift. [Pg.103]

In this work, a detailed kinetic model for the Fischer-Tropsch synthesis (FTS) has been developed. Based on the analysis of the literature data concerning the FT reaction mechanism and on the results we obtained from chemical enrichment experiments, we have first defined a detailed FT mechanism for a cobalt-based catalyst, explaining the synthesis of each product through the evolution of adsorbed reaction intermediates. Moreover, appropriate rate laws have been attributed to each reaction step and the resulting kinetic scheme fitted to a comprehensive set of FT data describing the effect of process conditions on catalyst activity and selectivity in the range of process conditions typical of industrial operations. [Pg.294]

With the recent development of zeolite catalysts that can efficiently transform methanol into synfuels, homogeneous catalysis of reaction (2) has suddenly grown in importance. Unfortunately, aside from the reports of Bradley (6), Bathke and Feder (]), and the work of Pruett (8) at Union Carbide (largely unpublished), very little is known about the homogeneous catalytic hydrogenation of CO to methanol. Two possible mechanisms for methanol formation are suggested by literature discussions of Fischer-Tropsch catalysis (9-10). These are shown in Schemes 1 and 2. [Pg.136]

Vinyl Fischer carbenes can be used as three-carbon components in Ni(0)-mediated and Rh(l)-catalyzed [3 + 2 + 21-reactions with alkynes (Schemes 48 and 49)142 and with allenes (Schemes 50 and 51).143 All three of the proposed mechanisms for the [3 + 2 + 2]-cycloadditions involve an initial carbene transfer from chromium to nickel or rhodium (Schemes 49, 52, and 53). As is seen from the products of the two [3 + 2 + 2]-reactions with 1,1-dimethylallene, although the nickel and rhodium carbenes 147G and 147K appear similar, the initial insertion of the allene occurs with opposite regioselectivity. [Pg.629]

Scheme 4. Reaction mechanism of enyne with Fischer carbene complex... Scheme 4. Reaction mechanism of enyne with Fischer carbene complex...
In the case of ethane, this mechanism cannot occur since the resulting metal-ethyl intermediate does not display any alkyl group in the P-position. Consequently, with tantalum hydride(s), 3, which cleave ethane, another process must take place, involving only one carbon atom at a time. Among various reasonable possibilities, we assume a carbene deinsertion from a tantalum-ethyl species because the reverse step is known in organometallic chemistry (Scheme 3.4) [22]. Note that this reverse step has been postulated as the key step in Fischer-Tropsch synthesis [23]. [Pg.83]

Several mechanism have been proposed for the copolymerization of epoxides with cyclic anhydrides, initiated by tertiary amines. In one of the first papers on copolymerization mechanisms Fischer 39,40) suggested the following scheme ... [Pg.115]

We can elaborate this VB formulation for the cycloaddition by replacing the nearest-neighbour active-space AOs in VB structures 50 and 51 with Coulson-Fischer orbitals [34(b)]. Thus if a and b are now the singly-occupied carbon and oxygen AOs of HCNO, and c and d are the singly-occupied carbon AOs of HCCH, the c and d AOs in structure 50 can be replaced by the Coulson-Fischer MOs c + k d and d + k"c. In structure 51, a + Ad, b + Ac, c + K b and d + K"a can replace the a, b c and d AOs. Use of these orbitals permits additional canonical Lewis VB structures to be included in the equivalent Lewis structure resonance scheme. The mechanism can then accommodate some charge transfer between the HCNO and HCCH reactants. The more-flexible wavefunction of Eq.(13),... [Pg.363]

The Fischer indole synthesis. The Fischer acid-catalyzed conversion of an 7V-arylhydrazone 42 into an indole is one of the most powerful and versatile methods for the preparation of indoles . The mechanism involves a [3,3] sigmatropic Claisen-type rearrangement of a protonated enehydrazine tautomer 43 to give intermediate 44, which spontaneously cyclizes by loss of ammonia, probably via indoline 45, to an indole 46 (Scheme 27). For unsymmetrical ketones, two isomeric indoles are possible and the general result is that the indole derived from the more stable (usually the more highly substituted) enehydrazine is formed. [Pg.806]

The ability of a p-carbene to react with an unsaturated hydrocarbon and form an enlarged dimetallocycle encourages speculation over their role in such processes as alkene metathesis and Fischer-Tropsch synthesis. In Scheme 6 a possible mechanism for metathesis initiated by a p-carbene is presented, owing much to other workers (T7,22). Reactions of p-carbenes with alkenes are under investigation in our laboratory. Recently Pettit has observed that the p-methylene complex [Fe2(C0)8(p-CH2)] generates propene when subjected to a pressure of ethene and has also suggested the intermediacy of a three-carbon dimetallocycle (23). [Pg.267]

An enantiopure Fischer carbene complex was able to react with 2-methoxyfuran in an intriguing manner that led to the formation of trisubstituted cyclopropane molecules in excellent diastereoselectivities. The relevant mechanism for the formation of a cyclopropane is depicted in Scheme 88 <2007CEJ1326>. [Pg.484]

The first hypothesis of a Fischer-Tropsch mechanism, as formulated by Sachtler and Biloen, is illustrated in Scheme 1. This mechanism is characterized by an initial C—O bond cleavage and chain growth through addition of species. [Pg.131]


See other pages where Fischer mechanisms scheme is mentioned: [Pg.146]    [Pg.146]    [Pg.110]    [Pg.63]    [Pg.151]    [Pg.154]    [Pg.226]    [Pg.271]    [Pg.120]    [Pg.49]    [Pg.216]    [Pg.115]    [Pg.163]    [Pg.110]    [Pg.336]    [Pg.345]    [Pg.148]    [Pg.97]    [Pg.121]    [Pg.20]    [Pg.21]    [Pg.110]    [Pg.336]    [Pg.345]    [Pg.191]    [Pg.1283]    [Pg.163]    [Pg.86]    [Pg.127]    [Pg.131]   
See also in sourсe #XX -- [ Pg.665 ]




SEARCH



Fischer mechanism

© 2024 chempedia.info