Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Field effect constant

For another set of field-effect constants, based on a different premise, see Draffehn, J. Ponsold, K. J. Prakt. Chem., 1978, 320, 249. [Pg.378]

Inductive o values for substituents may be obtained by fitting Hammett Equations to a standard series of reactions which are considered to possess no resonance interaction the average values of a from these correlations provides a set of coefficients (a") " which correspond to purely inductive transmission of the polar effect. The coefficients derived from the ionisation of XC6H4CH2CO2H, XC6H4CH2CH2CO2H and the alkaline hydrolysis of XC6H4CH2CO2C2H5 and XC6H4CH2CH2CO2C2H5 (a°) are regarded as purely inductive and field effect constants. [Pg.26]

Decades of work have led to a profusion of LEERs for a variety of reactions, for both equilibrium constants and reaction rates. LEERs were also established for other observations such as spectral data. Furthermore, various different scales of substituent constants have been proposed to model these different chemical systems. Attempts were then made to come up with a few fundamental substituent constants, such as those for the inductive, resonance, steric, or field effects. These fundamental constants have then to be combined linearly to different extents to model the various real-world systems. However, for each chemical system investigated, it had to be established which effects are operative and with which weighting factors the frmdamental constants would have to be combined. Much of this work has been summarized in two books and has also been outlined in a more recent review [9-11]. [Pg.182]

In contrast, equilibrium properties have been successfully discussed in terms of the field effect. Notable instances are those of the ionisation constants of saturated dibasic acids, - and of carboxyl groups held in... [Pg.126]

Liquid crystal polymers are also used in electrooptic displays. Side-chain polymers are quite suitable for this purpose, but usually involve much larger elastic and viscous constants, which slow the response of the device (33). The chiral smectic C phase is perhaps best suited for a polymer field effect device. The abiHty to attach dichroic or fluorescent dyes as a proportion of the side groups opens the door to appHcations not easily achieved with low molecular weight Hquid crystals. Polymers with smectic phases have also been used to create laser writable devices (30). The laser can address areas a few micrometers wide, changing a clear state to a strong scattering state or vice versa. Future uses of Hquid crystal polymers may include data storage devices. Polymers with nonlinear optical properties may also become important for device appHcations. [Pg.202]

Chemical and biological sensors (qv) are important appHcations of LB films. In field-effect devices, the tunneling current is a function of the dielectric constant of the organic film (85—90). For example, NO2, an electron acceptor, has been detected by a phthalocyanine (or a porphyrin) LB film. The mechanism of the reaction is a partial oxidation that introduces charge carriers into the film, thus changing its band gap and as a result, its dc-conductivity. Field-effect devices are very sensitive, but not selective. [Pg.536]

One underlying physical basis for the failure of Hammett reaction series is that substituent interactions are some mixture of resonance, field, and inductive effects. When direct resonance interaction is possible, the extent of the resonance increases, and the substituent constants appropriate to the normal mix of resonance and field effects then fail. There have been many attempts to develop sets of a values that take into account extra resonance interactions. [Pg.210]

In view of the magnitude of crystal-field effects it is not surprising that the spectra of actinide ions are sensitive to the latter s environment and, in contrast to the lanthanides, may change drastically from one compound to another. Unfortunately, because of the complexity of the spectra and the low symmetry of many of the complexes, spectra are not easily used as a means of deducing stereochemistry except when used as fingerprints for comparison with spectra of previously characterized compounds. However, the dependence on ligand concentration of the positions and intensities, especially of the charge-transfer bands, can profitably be used to estimate stability constants. [Pg.1273]

As suggested by Roberts and Moreland many years ago (1953), the acidity constants of 4-substituted bicyclooctane-l-carboxylic acids provide a very suitable system for defining a field/induction parameter. In this rigid system the substituent X is held firmly in place and there is little possibility for mesomeric delocalization or polarization interactions between X and COOH (or COO-). Therefore, it can be assumed that X influences the deprotonation of COOH only through space (the field effect) and through intervening o-bonds. On this basis Taft (1956, p. 595) and Swain and Lupton (1968) were able to calculate values for o and crR. [Pg.149]

Before we close this section we make reference to an extended form of the Hammett equation in which the substituent constant and the reaction constant are separated into contributions from the field effect (F) and the mesomeric effect (R). This procedure was suggested by Taft in 1957 for 4-substituted benzene derivatives. It is called a dual substituent parameter (DSP) equation (Scheme 7-2). [Pg.150]

Accommodation of metal atoms of widely differing ionic radii into the same overall structure creates interesting possibilities for the doping of metal ions into a common matrix for spectroscopic examination under nearly constant crystal field effects. [Pg.61]

Transition-metal complexes span an enormous range of stabilities. One of the principal aims of this chapter is to attempt to understand some of the factors which control these, and to determine the importance of ligand-field effects. Very extensive compilations of stability constants are available. [Pg.145]

The greater than unit value of Kf in pure solvents is the result expected by the field effect model (33) on a distance basis. The lower than unit value ofKj in the mixed aqueous organic solvents appears to be related to preferential hydration of the reaction center, which results in an increased effective dielectric constant from the m- compared to the p- position. The fact that values fall into two separate categories for pure organic and mixed aqueous organic solvents does not support the treatments of Exner (20) or Yukawa and Tsuno (16). [Pg.59]

For sets nos. 1, 2, and 3 of Table XXVII, eq. (1) appears to hold for ionization of ortho substituted benzoic acids (f =. 048 —. 058), with Kj = Pi I= 1.6 . 1. This result is reasonable for field effects transmitted only throu the molecular cavity i.e., the lines of force do not pass through appreciable solvent of high dielectric constant (the solvent is presumably excluded by the close proximity of the CO2H center and the substituent) (36). It is further of interest that eq. (1) fails for the ionization of ortho substituted benzoic acids in solvents of high OH content (sets nos. 4, 5, and 6 of Table XXVII). [Pg.59]

The operation principle of these TFTs is identical to that of the metal-oxide-semiconductor field-effect transistor (MOSFET) [617,618]. When a positive voltage Vg Is applied to the gate, electrons are accumulated in the a-Si H. At small voltages these electrons will be localized in the deep states of the a-Si H. The conduction and valence bands at the SiN.v-a-Si H interface bend down, and the Fermi level shifts upward. Above a certain threshold voltage Vth a constant proportion of the electrons will be mobile, and the conductivity is increased linearly with Vg - Vih. As a result the transistor switches on. and a current flows from source to drain. The source-drain current /so can be expressed as [619]... [Pg.177]

French workers have studied the 1H- and 13C-NMR parameters of disubstituted selenophenes.37 38 The proton chemical shifts are discussed in terms of magnetic anisotropy and electric field effects of the substituents in order to study the conformational equilibrium of the carbonyl group. The relationship between the H- and 13C-chemical shifts and 7t-electron distribution calculated by the PPP method are examined. Shifts and coupling constants are discussed in additivity terms. [Pg.135]

A. Poghossian, M.H. Abouzar, F. Amberger, D. Mayer, Y. Han, S. Ingebrandt, A. Offenhauser, and M.J. Schoning, Field-effect sensors with charged macromolecules characterisation by capacitance—voltage, constant capacitance, impedance spectroscopy and atomic-force microscopy methods. Biosens. Bioelectron. 22, 2100-2107 (2007). [Pg.234]


See other pages where Field effect constant is mentioned: [Pg.188]    [Pg.190]    [Pg.188]    [Pg.190]    [Pg.329]    [Pg.338]    [Pg.328]    [Pg.565]    [Pg.523]    [Pg.371]    [Pg.372]    [Pg.412]    [Pg.7]    [Pg.373]    [Pg.157]    [Pg.523]    [Pg.52]    [Pg.15]    [Pg.159]    [Pg.364]    [Pg.284]    [Pg.10]    [Pg.147]    [Pg.120]    [Pg.518]    [Pg.519]    [Pg.85]    [Pg.352]    [Pg.331]   
See also in sourсe #XX -- [ Pg.406 ]




SEARCH



Field constant

Field effect substituent constant

© 2024 chempedia.info