Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Field automobile

Polyamide PPOs are manufactured by General Electric (Noryl GTX), BASF having now withdrawn from marketing their product (Ultranyl). Usage of the blends has so far been mainly in the automobile field for such applications as valance panels, wheel trims, grilles, rear quarter panels, front bumpers and tailgates. [Pg.592]

The development of new polymer alloys has caused a lot of excitement in recent years but in fact the concept has been around for a long time. Indeed one of the major commercial successes of today, ABS, is in fact an alloy of acrylonitrile, butadiene and styrene. The principle of alloying plastics is similar to that of alloying metals - to achieve in one material the advantages possessed by several others. The recent increased interest and activity in the field of polymer alloys has occurred as a result of several new factors. One is the development of more sophisticated techniques for combining plastics which were previously considered to be incompatible. Another is the keen competition for a share of new market areas such as automobile bumpers, body panels etc. These applications call for combinations of properties not previously available in a single plastic and it has been found that it is less expensive to combine existing plastics than to develop a new monomer on which to base the new plastic. [Pg.11]

A magnetic field due to an electric current can be turned on and off simply by turning the current on and off. A piece of iron attached to the end of a spring having the other end fixed can be moved with a magnetic field and returned to its initial position by the spring. The iron piece can then be used to actuate a switch or move a lever on a valve. Applications of this principle include electrically controlled valves in a washing machine and an electrically controlled switch for the starter in an automobile. [Pg.743]

Large-scale crude oil exploitation began in the late nineteenth century. Internal combustion engines, which make use of the heat and kinetic energy of controlled explosions in a combustion chamber, were developed at approximately the same time. The pioneers in this field were Nikolaus Otto and Gottleib Daimler. These devices were rapidly adapted to military purposes. Small internal-combustion motors were used to drive dynamos to provide electric power to fortifications in Europe and the United States before the outbreak of World War I. Several armies experimented vith automobile transportation before 1914. The growing demand for fossil fuels in the early decades of the twentieth centuiy was exacerbated by the modernizing armies that slowly introduced mechanization into their orders of battle. The traditional companions of the soldier, the horse and mule, were slowly replaced by the armored car and the truck in the early twentieth century. [Pg.800]

The polymer field is versatile and fast growing, and many new polymers are continually being produced or improved. The basic chemistry principles involved in polymer synthesis have not changed much since the beginning of polymer production. Major changes in the last 70 years have occurred in the catalyst field and in process development. These improvements have a great impact on the economy. In the elastomer field, for example, improvements influenced the automobile industry and also related fields such as mechanical goods and wire and cable insulation. [Pg.323]

Another important and growing market for plastics is the automotive field. Many automobile parts are now made of plastics. Among the most used polymers are polystyrene polymers and copolymers, polypropylene, polycarbonates, and polyvinyl chloride. These materials reduce the cost and the weight of the cars. As a result, gasoline consumption is also reduced. [Pg.324]

Advances in the automobile industry are driving the research in the field of elastomers and the future research would be focused on the following aspects ... [Pg.1026]

Examples of multi-disciplinary innovation can also be found in the field of environmental catalysis such as a newly developed catalyst system for exhaust emission control in lean burn automobiles. Japanese workers [17] have successfully merged the disciplines of catalysis, adsorption and process control to develop a so-called NOx-Storage-Reduction (NSR) lean burn emission control system. This NSR catalyst employs barium oxide as an adsorbent which stores NOx as a nitrate under lean burn conditions. The adsorbent is regenerated in a very short fuel rich cycle during which the released NOx is reduced to nitrogen over a conventional three-way catalyst. A process control system ensures for the correct cycle times and minimizes the effect on motor performance. [Pg.7]

The most recent innovation in this field is scanning tunnelling microscopy, which has the capability of atomic resolution. In the work reported here two surface reactions are examined using this technique. These reactions are of relevance to automobile catalysis (CO oxidation on Rh) and methanol oxidation/synthesis on Cu. It is proposed that active sites are imaged in these reactions and that these active sites can indeed be extremely dilute on the surface. [Pg.288]

In this context, Benson and Ponton declare that while the chemical industry has made considerable achievements in reactor performance, safety and control, comparable to those in the microelectronics business, this success is by no means evident to the public, in deep contrast to the latter [139], It is said that this is mainly and in a way simply due to the visual recognition of chemical production plants. From a distance and for somebody outside the field, the chemical plants of the late 1940s and the early 1990s look virtually similar, whereas one is able immediately to see the big differences in, e.g., television sets and automobiles. Hence it is not evident that notable improvements were made over the decades. [Pg.82]

Many authors mention the use of micro reactors for fuel processing as one of the most promising fields [1,104]. Wegeng et al. point at using this micro-fuel processing for transportation [Ij. The placement of reformers imder the hood of an automobile for converting liquid hydrocarbons to hydrogen is explicitly mentioned. [Pg.97]

P.Y.97 is used in a variety of fields. Even in pastel shades, it is used in industrial finishes while its full shades lend color to automobile refinishes. In emulsion paints, both its medium and full shades are suited to exterior application. The printing ink industry uses P.Y.97 in high grade printing products, especially where excellent fastness is required, such as in stable posters, etc. It lends itself without difficulty to all printing techniques. However, lack of fastness to monostyrene and acetone and therefore a certain tendency to bleed in these media precludes its application in deco printing inks, i.e., for decorative laminates. [Pg.227]


See other pages where Field automobile is mentioned: [Pg.12]    [Pg.920]    [Pg.79]    [Pg.341]    [Pg.361]    [Pg.204]    [Pg.17]    [Pg.175]    [Pg.62]    [Pg.441]    [Pg.453]    [Pg.454]    [Pg.677]    [Pg.700]    [Pg.205]    [Pg.79]    [Pg.1081]    [Pg.241]    [Pg.3]    [Pg.525]    [Pg.608]    [Pg.61]    [Pg.100]    [Pg.1022]    [Pg.1039]    [Pg.180]    [Pg.311]    [Pg.6]    [Pg.14]    [Pg.363]    [Pg.483]    [Pg.151]    [Pg.162]    [Pg.1388]    [Pg.45]    [Pg.356]    [Pg.383]    [Pg.360]    [Pg.167]   
See also in sourсe #XX -- [ Pg.107 ]




SEARCH



Automobiles

© 2024 chempedia.info