Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fiber melt spinning process

FIGURE 1.5 Fiber melt spinning process. (Reprinted by permission of the publisher from Tadmor and Gogos, 1979.)... [Pg.2]

Synthetic Fiber and Plastics Industries. In the synthetic fibers and plastics industries, the substrate itself serves as the solvent, and the whitener is not appHed from solutions as in textiles. Table 6 Hsts the types of FWAs used in the synthetic fibers and plastic industries. In the case of synthetic fibers, such as polyamide and polyester produced by the melt-spinning process, FWAs can be added at the start or during the course of polymerization or polycondensation. However, FWAs can also be powdered onto the polymer chips prior to spinning. The above types of appHcation place severe thermal and chemical demands on FWAs. They must not interfere with the polymerization reaction and must remain stable under spinning conditions. [Pg.119]

Tensile Properties. Tensile properties of nylon-6 and nylon-6,6 yams shown in Table 1 are a function of polymer molecular weight, fiber spinning speed, quenching rate, and draw ratio. The degree of crystallinity and crystal and amorphous orientation obtained by modifying elements of the melt-spinning process have been related to the tenacity of nylon fiber (23,27). [Pg.247]

The melt-spinning process used to convert mesophase pitch into fiber form is similar to that employed for many thermoplastic polymers. Normally, an extruder melts the pitch and pumps it into the spin pack. Typically, the molten pitch is filtered before being extruded through a multi-holed spinnerette. The pitch is subjected to high extensional and shear stresses as it approaches and flows through the spinnerette capillaries. The associated torques tend to orient the liquid crystalline pitch in a regular transverse pattern. Upon emerging from the... [Pg.128]

A very unusual characteristic of mesophase pitch is the extreme dependency of its viscosity on temperature [19,34,35]. This factor has a profound influence on the melt-spinning process (described above), as a mesophase pitch fiber will achieve its final diameter within several millimeters of the face of the spinnerette, in sharp contrast to most polymeric fibers. [Pg.129]

Vapor grown carbon fiber (VGCF) is the descriptive name of a class of carbon fiber which is distinctively different from other types of carbon fiber in its method of production, its unique physical characteristics, and the prospect of low cost fabrication. Simply stated, this type of carbon fiber is synthesized from the pyrolysis of hydrocarbons or carbon monoxide in the gaseous state, in the presence of a catalyst in contrast to a melt-spinning process common to other types of carbon fiber. [Pg.139]

The process competes with the traditional method of fiber production in which the precursor material is melted, usually in an arc furnace, then drawn through spinnerets and spun or impinged by high pressure air. The melt-spin process is not well suited to materials with high melting points such as zirconia, silicon carbide, or pure alumina. [Pg.465]

The melt spinning process used for PET fibers is clean and economical. [Pg.401]

Figure 12.7 Schematic of the melt-spinning process used to produce PET fibers... Figure 12.7 Schematic of the melt-spinning process used to produce PET fibers...
The melt spinning process for PET fibers can be divided into three regions of take-up speed, as follows ... [Pg.414]

The dyeing of polypropylene fibers, being an item of research for decades, is successfully accomplished with partially stearate-modified hyperbranched polyesteramides. The long alkyl chains ensure compatibility with the polypropylene matrix. The mixing-in of hyperbranched polyesteramides via extrusion affected neither the melt spinning process nor the final polypropylene fiber properties. The modified fibers are dyeable under standard conditions as are, e.g., polyesters or cotton. They can even be used for printing for example a picture pattern on a polypropylene carpet. [Pg.79]

Sulfar fibers are extruded from polyphenylene sulfide) or PPS by the melt-spinning process. The first PPS polymer was made in 1897 by the Friedel-Crafts reaction of sulfur and benzene. Researchers at Dow Chemical, in the early 1950s, succeeded in producing high-molecular weight linear PPS by means of the Ullmann condensation of alkali metal salts of p-bromothiophenol. [Pg.489]

The process of cellulose regeneration in the form of lyocell fibers is significantly simpler than that of the viscose rayon process. It is illustrated in O Fig. 16. A solution containing 14% cellulose, 10% water, and 76% NMMO plus stabilizers is extruded at a temperature slightly above 100 °C into an aqueous NMMO-bath from which cellulose is precipitated [74,75]. The extrusion has been described as a melt-spinning process that has recently made it possible to manufacture cellulosic self-bonded meltblown nonwovens as well [76]. [Pg.1495]

In addition to these process, special processes are known, particularly for the manufacture of thin metal fibers the continuous filament process, melt spinning processes and the Taylor process. [Pg.385]

For this comparison, a melt-spinning process was chosen. Each special thermoplastic process influences the structure and thus the properties of the obtained polymer samples differently. This is particularly pronounced for fibers, since especially melt spinning is a process which makes extremely high demands on the deformation ability of the polymer melts at high deformation speeds. Particularly the tensile stress within the fiber formation zone is a very important factor to reach a high orientation of the macromolecules along the fiber axis and a stress-induced crystallization. This crystallization should be discussed in relation to PLA and PHB multifilaments, and at the same time the general property spectrum of these polymers should be represented. [Pg.203]

It is an aliphatic polyester derived from renewable resources, such as com starch, tapioca roots, chips or starch, or sugarcane. Polylactic acid or polylactide (PLA) can withstand temperatures up to 110 °C [69]. PLA is soluble in chlorinated solvents, hot benzene, tetrahydrofuran, and dioxane [70]. It can be processed like other thermoplastics into fiber (for example, using conventional melt spinning processes) and film. Due to the chiral nature of lactic acid, several distinct forms of polylactide exist ... [Pg.11]

In solution spinning process, the polymer is used as a solution by dissolving polymer in an appropriate solvent, whereas in the melt spinning process, the polymer is in the molten state. However, in both the cases, the polymer (either in the molten or in the solution form) is streamed through a spinneret, which is a special kind of plate with extremely fine holes for the fibers. The solution spinning may be of three types. [Pg.23]


See other pages where Fiber melt spinning process is mentioned: [Pg.234]    [Pg.234]    [Pg.219]    [Pg.248]    [Pg.257]    [Pg.182]    [Pg.298]    [Pg.424]    [Pg.224]    [Pg.579]    [Pg.219]    [Pg.248]    [Pg.257]    [Pg.493]    [Pg.204]    [Pg.459]    [Pg.424]    [Pg.171]    [Pg.60]    [Pg.57]    [Pg.238]   


SEARCH



Fiber formation melt spinning process

Fiber processing

Fiber spinning

Fiber spinning, process

MELT PROCESSING

Melt processability

Melt spin

Melt spinning, process

Melt-processible

Processing melting

Processing spinning

Spin process

Spinning processes

© 2024 chempedia.info