Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ferric iodide

Eisen-hydrozyd, n. ferric hydroxide, iron(III) hydroxide, -hydroxydul, n. ferrous hydroxide, iron(II) hydroxide. -jodid,n. iron iodide, specif, ferric iodide, iron(III) iodide, -jodiir, n. ferrous iodide, iron(II) iodide, -jodiirjo-did, n. ferrosoferric iodide, iron(II,IIl) iodide, kalium, n. potassium ferrate, -kaliumalaun,... [Pg.125]

Another method of preparation that does not involve the formation of iodate is by treating iron turnings with iodine solution. The product, ferroso-ferric iodide, Fesls I6H2O, is boiled with 15 wt% potassium carbonate solution ... [Pg.762]

Write the chemical formulas for (a) cupric sulfide ib) stannous fluoride (c) plumbous chloride id) ferric iodide (e) auric nitrate if ) mercuric sulfide. [Pg.158]

Iron and iodine interact in the presence of water, evolving heat, ferrous iodide passing into solution. The reaction appears to take place in stages involving the formation of ferric iodide, which decomposes into ferric oxide and hydrogen iodide, the last-named attacking the free iron with the formation of ferrous iodide.2... [Pg.52]

Addition of a small quantity of a ferric or ferrous salt greatly accelerates the reaction,6 due to the alternate formation of ferric iodide and reduction to the ferrous salt as follows —... [Pg.80]

Ferric iodide, Fel3, has not as yet been prepared, but the possibility of its existence is perhaps indicated by the fact that hydrated ferric oxide dissolves in hydriodic acid, yielding a brown solution. [Pg.108]

Silver chloride, ferric iodide, zirconium chloride, titanium chloride. Similar to above. Wanklyn and Carius, ibid. Buckton, Annalen, 1859, 109, 225 Hinsberg, 1887, 239, 254 Paterno and Pera-toner, Ber., 1889, 22, 467. [Pg.21]

Pyrazolin-5-ones react with salts of various metals to form compounds in which the pyrazolinone has reacted in its enolic form with replacement of the enolic hydrogen to give a salt and having semipolar bonds formed by donation of electrons to the metal by the nitrogen atoms393 394 Usually these compounds contain the number of pyrazolinone residues corresponding to the valence of the metal atom. Such salts as cuprous iodide, ferric iodide, cobaltous iodide, silver iodide and silver diiodide participate in such reactions.393,394 In addition, complexes may be formed in which there has been no elimination of a small molecule between the reactants and no formation of ionic bonds.432... [Pg.123]

Anhydrous cupric sulphate is white but forms a blue hydrate and a blue aqueous solution. The solution turns yellow when treated with concentrated hydrochloric acid, dark blue with ammonia, and gives a white precipitate and brown solution when treated with potassium iodide. A yellow-brown aqueous solution of ferric chloride becomes paler on acidification with sulphuric or nitric... [Pg.420]

Chemical Properties. The most significant chemical property of L-ascorbic acid is its reversible oxidation to dehydro-L-ascorbic acid. Dehydro-L-ascorbic acid has been prepared by uv irradiation and by oxidation with air and charcoal, halogens, ferric chloride, hydrogen peroxide, 2,6-dichlorophenolindophenol, neutral potassium permanganate, selenium oxide, and many other compounds. Dehydro-L-ascorbic acid has been reduced to L-ascorbic acid by hydrogen iodide, hydrogen sulfide, 1,4-dithiothreitol (l,4-dimercapto-2,3-butanediol), and the like (33). [Pg.13]

Chloride. Chloride is common in freshwater because almost all chloride salts are very soluble in water. Its concentration is generally lO " to 10 M. Chloride can be titrated with mercuric nitrate. Diphenylcarbazone, which forms a purple complex with the excess mercuric ions at pH 2.3—2.8, is used as the indicator. The pH should be controlled to 0.1 pH unit. Bromide and iodide are the principal interferences, whereas chromate, ferric, and sulfite ions interfere at levels greater than 10 mg/L. Chloride can also be deterrnined by a colorimetric method based on the displacement of thiocyanate ion from mercuric thiocyanate by chloride ion. The Hberated SCN reacts with ferric ion to form the colored complex of ferric thiocyanate. The method is suitable for chloride concentrations from 10 to 10 M. [Pg.231]

Bromide ndIodide. The spectrophotometric determination of trace bromide concentration is based on the bromide catalysis of iodine oxidation to iodate by permanganate in acidic solution. Iodide can also be measured spectrophotometricaHy by selective oxidation to iodine by potassium peroxymonosulfate (KHSO ). The iodine reacts with colorless leucocrystal violet to produce the highly colored leucocrystal violet dye. Greater than 200 mg/L of chloride interferes with the color development. Trace concentrations of iodide are determined by its abiUty to cataly2e ceric ion reduction by arsenous acid. The reduction reaction is stopped at a specific time by the addition of ferrous ammonium sulfate. The ferrous ion is oxidi2ed to ferric ion, which then reacts with thiocyanate to produce a deep red complex. [Pg.232]

Like most phenols, it gives an intense blue colour with solution of ferric chloride. By heating it with alcoholic potash and methyl iodide it is converted into methyl-chavicol or estragol, the characteristic constituent of tarragon oil. [Pg.258]

Ammonium-ferrisulfat, n. ammonium iron(III). sulfate, ferric ammonium sulfate, -ferro-sulfat, n. ammonium iron(II) sulfate, ferrous ammonium sulfate, -jodat, n. ammonium iodate. -jodid, n. ammonium iodide, -platinchlorid, n. ammonium platinichloride (chloroplatinate). -rest, m. ammonium radical. rhodanid, -rhodantir, n. ammonium thiocyanate, -salpeter, m. ammonium nitrate, -salz, n. ammonium s t. -selfe,/. ammonia soap, -sulfhydrat, n. ammonium hydrosulfide, -sulfocyanid, n. ammonium thiocyanate, -verbindung,/. ammonium compound, -zinn-chlorid, n. ammonium chlorostannate, pink salt. [Pg.21]

Ferrifeiro-cyanid, n. ferric ferrocyanide (Prussian blue), -jodid, n. ferroeoferric iodide, -oxyd, n. ferroeoferric oxide, iron(II,III) oxide. [Pg.151]

A number of methods have been proposed for the detection of rancidity. The determination of active oxygen consists of dissolving the fat in a suitable medium such as chloroform and acetic acid, adding potassium iodide, and titrating the liberated iodine with a standard thiosulfate solution (16, 20). This is perhaps the most widely used method at the present time. Another procedure which has been proposed for the detection of peroxides employs ferrous ammonium sulfate and ammonium thiocyanate in acetone. The resulting red color of ferric thiocyanate is measured spectrophotometrically, and is said by the authors to yield more reproducible results than do the usual titration methods (21). [Pg.56]

Chemical Reactions. Mannitol is regenerated by treatment of the hexanitrate with Amm sulfide (Ref 6), iron in acet ac (Ref 7), ferric chloride (Ref 14), or with hydrogen iodide... [Pg.31]

Redox (reduction-oxidation) titrimetry is used primarily for nitrate detns. Five systems are in current use ferrous sulfate—dichromate, io dome trie, periodic acid oxidation (NaOH titrant), K permanganate, and titanous chloride-ferric ammonium sulfate. The ferrous sulfate— dichromate system is used for MNT DNT detns (Vol 2, C162-Lff Vol 6, F17-Rff Ref 17). In the iodometric procedure, the sample (ie, NG) is treated in a C02 atm with a satd soln of Mn chloride in coned HC1, the vol reaction products are bubbled thru a K iodide soln, and the liberated iodine is titrated with standard thiosulfate soln (Refs 1 17). The periodic... [Pg.301]

To make a peroxide test, place a few milligrams of sodium iodide, a trace of ferric chloride, and 2-3 ml. of glacial acetic acid in a test tube and carefully add 1-2 ml. of the ether solution. [Pg.56]

The reduction of iodine by Fe(II) is, of course, the reverse of the ferric ion-iodide ion reaction (p. 408) and it influences the kinetics of the latter. However, the direct reaction has been studied, the rate expression being ... [Pg.468]

A determination of dimethyl sulphoxide by Dizdar and Idjakovic" is based on the fact that it can cause changes in the visible absorption spectra of some metal compounds, especially transition metals, in aqueous solution. In these solutions water and sulphoxide evidently compete for places in the coordination sphere of the metal ions. The authors found the effect to be largest with ammonium ferric sulphate, (NH4)2S04 Fe2(S04)3T2H20, in dilute acid and related the observed increase in absorption at 410 nm with the concentration of dimethyl sulphoxide. Neither sulphide nor sulphone interfered. Toma and coworkers described a method, which may bear a relation to this group displacement in a sphere of coordination. They reacted sulphoxides (also cyanides and carbon monoxide) with excess sodium aquapentacyanoferrate" (the corresponding amminopentacyanoferrate complex was used) with which a 1 1 complex is formed. In the sulphoxide determination they then titrated spectrophotometrically with methylpyrazinium iodide, the cation of which reacts with the unused ferrate" complex to give a deep blue ion combination product (absorption maximum at 658 nm). [Pg.118]

The intermediate-spin ground state of the ferric compounds published by Jager and coworkers is also stabilized by a N4-macrocyclic ligand, [N4] which exist in different varieties of substitutions. The apical ligands are weakly coordinating halides or pseudohalides, such as iodide in the case of [Fe [N4]l] (20) [68]. The electronic structure was elucidated by EPR, Mbssbauer and DFT studies. [Pg.422]


See other pages where Ferric iodide is mentioned: [Pg.24]    [Pg.597]    [Pg.18]    [Pg.337]    [Pg.1964]    [Pg.597]    [Pg.47]    [Pg.1963]    [Pg.138]    [Pg.119]    [Pg.24]    [Pg.597]    [Pg.18]    [Pg.337]    [Pg.1964]    [Pg.597]    [Pg.47]    [Pg.1963]    [Pg.138]    [Pg.119]    [Pg.607]    [Pg.361]    [Pg.457]    [Pg.292]    [Pg.146]    [Pg.149]    [Pg.374]    [Pg.377]    [Pg.398]    [Pg.586]    [Pg.104]    [Pg.142]    [Pg.1003]    [Pg.151]    [Pg.118]    [Pg.408]    [Pg.607]    [Pg.419]   
See also in sourсe #XX -- [ Pg.108 ]




SEARCH



Ferric acetates iodid

© 2024 chempedia.info