Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Feedback rapid

Electrotransport technology offers a number of benefits for therapeutic appHcations, including systemic or local adininistration of a wide variety of therapeutic agents with the potential adininistration of peptides and proteins long-term noninvasive administration, improving convenience and compliance controlled release, providing a desired deflvery profile over an extended period with rapid onset of efficacious plasma dmg levels and in some cases reduced side effects and a transport rate relatively independent of skin type or site. Additional benefits include easy inception and discontinuation of treatment, patterned and feedback-controlled deflvery, and avoidance of first-pass hepatic metaboHsm. [Pg.145]

On-Hne Procedures The growing trend toward automation in industry has resiilted in many studies of rapid procedures for generating size information so that feedback loops can be instituted as an integral part of a process. Many of these techniques are modifications of more traditional methods. The problems associated with on-line methods include allocation and preparation of a representative sample analysis of the sample evaluation of the results. The interface between the measuring apparatus and the process has the potential of high complexity, and consequently, high costs [Leschonsld, Paiticle Cha racterization, 1, 1 (July 1984)]. [Pg.1828]

Rajamani and Herbst (loc. cit.) compared control of an experimental pilot-mill circuit using feedback and optimal control. Feedback control resulted in oscillatory behavior. Optimal control settled rapidly to the final value, although there was more noise in the results. A more complete model should give even better results. [Pg.1840]

The role of oceanic physical chemistry and biochemistry in the enhanced greenhouse future is still uncertain. We have discussed the mechanisms generating a number of potential feedbacks, both positive and negative in their impact. However, new interactions are constantly being discovered in nature, and model representation of them is a rapidly evolving science. At present what we can say is that this is a young field of much intellectual and practical promise. [Pg.32]

In the skill-based mode, recovery is usually rapid and efficient, because the individual will be aware of the expected outcome of his or her actions and will therefore get early feedback with regard to any slips that have occurred that may have prevented this outcome being achieved. This emphasizes the role of feedback as a critical aspect of error recovery. In the case of mistakes, the mistaken intention tends to be very resistant to disconfirming evidence. People tend to ignore feedback information that does not support their expectations of the situation, which is illustrated by case study 1.14. This is the basis of the commonly observed "mindset" syndrome. [Pg.76]

Factor Xlla converts prekallikrein to kallikrein and kallikrein cleaves HK to generate bradykinin. There is also an important positive feedback in the system in which the kallikrein generated rapidly converts unactivated factor XII to activated factor XII, and the rate of this reaction is hundreds of times faster than the rate of autoactivation [11]. Therefore, much of the unactivated factor XII can be cleaved and activated by kallikrein. Cl inhibitor inhibits all functions of factor Xlla and it is one of two major plasma kallikrein inhibitors. Thus all functions of kallikrein are also inhibited, including the feedback activation of factor XII, the cleavage of HK, and the activation of plasma pro-urokinase [66] to lead to plasmin formation. Cl inhibitor also inhibits the fibrinolytic enzyme plasmin, although it is a relatively minor inhibitor compared to a2-antiplasmin or a2-macroglobulin. [Pg.76]

A further insight is that the best workflow depends on a combination of factors that can in many cases be expressed in closed mathematical form, allowing very rapid graphical feedback to users of what then becomes a visualization rather than a stochastic simulation tool. This particular approach is effective for simple binary comparisons of methods (e.g., use of in vitro alone vs. in silico as prefilter to in vitro). It can also be extended to evaluation of conditional sequencing for groups of compounds, using an extension of the sentinel approach [24]. [Pg.268]

Given that, under the defined conditions, there is no interfacial kinetic barrier to transfer from phase 2 to phase 1, the concentrations immediately adjacent to each side of the interface may be considered to be in dynamic equilibrium throughout the course of a chronoamperometric measurement. For high values of Kg the target species in phase 2 is in considerable excess, so that the concentration in phase 1 at the target interface is maintained at a value close to the initial bulk value, with minimal depletion of Red in phase 2. Under these conditions, the response of the tip (Fig. 11, case (a)] is in agreement with that predicted for other SECM diffusion-controlled processes with no interfacial kinetic barrier, such as induced dissolution [12,14—16] and positive feedback [42,43]. A feature of this response is that the current rapidly attains a steady state, the value of which increases... [Pg.307]

In Ref. 30, the transfer of tetraethylammonium (TEA ) across nonpolarizable DCE-water interface was used as a model experimental system. No attempt to measure kinetics of the rapid TEA+ transfer was made because of the lack of suitable quantitative theory for IT feedback mode. Such theory must take into account both finite quasirever-sible IT kinetics at the ITIES and a small RG value for the pipette tip. The mass transfer rate for IT experiments by SECM is similar to that for heterogeneous ET measurements, and the standard rate constants of the order of 1 cm/s should be accessible. This technique should be most useful for probing IT rates in biological systems and polymer films. [Pg.398]

The challenge for the drug discovery organization is how to handle the resource issues for multiple screening data feedback. Often a combination of experimental screens and computational prediction approaches will be used. Rapid data feedback to the medicinal chemist is essential, whether the data is experimental or computational. Data delayed is data with greatly reduced value. [Pg.21]


See other pages where Feedback rapid is mentioned: [Pg.33]    [Pg.239]    [Pg.33]    [Pg.239]    [Pg.2489]    [Pg.43]    [Pg.163]    [Pg.175]    [Pg.224]    [Pg.377]    [Pg.121]    [Pg.331]    [Pg.522]    [Pg.27]    [Pg.187]    [Pg.66]    [Pg.719]    [Pg.92]    [Pg.249]    [Pg.104]    [Pg.248]    [Pg.1008]    [Pg.640]    [Pg.641]    [Pg.888]    [Pg.396]    [Pg.405]    [Pg.125]    [Pg.486]    [Pg.489]    [Pg.71]    [Pg.276]    [Pg.568]    [Pg.690]    [Pg.129]    [Pg.206]    [Pg.215]    [Pg.27]    [Pg.233]    [Pg.81]    [Pg.314]    [Pg.321]    [Pg.19]   
See also in sourсe #XX -- [ Pg.222 ]




SEARCH



© 2024 chempedia.info