Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Liver fatty acids

Acute liver failure Low long-chain fatty acids (Liver) Not reported Not available Anecdotal reports... [Pg.2235]

COMPARTMENTALIZED PYRUVATE CARBOXYLASE DEPENDS ON METABOLITE CONVERSION AND TRANSPORT The second interesting feature of pyruvate carboxylase is that it is found only in the matrix of the mitochondria. By contrast, the next enzyme in the gluconeogenic pathway, PEP carboxykinase, may be localized in the cytosol or in the mitochondria or both. For example, rabbit liver PEP carboxykinase is predominantly mitochondrial, whereas the rat liver enzyme is strictly cytosolic. In human liver, PEP carboxykinase is found both in the cytosol and in the mitochondria. Pyruvate is transported into the mitochondrial matrix, where it can be converted to acetyl-CoA (for use in the TCA cycle) and then to citrate (for fatty acid synthesis see Figure 25.1). /Uternatively, it may be converted directly to 0/ A by pyruvate carboxylase and used in glu-... [Pg.746]

Acetoacetate and /3-hydroxybutyrate are transported through the blood from liver to target organs and tissues, where they are converted to acetyl-CoA (Figure 24.29). Ketone bodies are easily transportable forms of fatty acids that move through the circulatory system without the need for eomplexation with serum albumin and other fatty acid—binding proteins. [Pg.798]

Even though acetate units, such as those obtained from fatty acid oxidation, cannot be used for net synthesis of carbohydrate in animals, labeled carbon from " C-labeled acetate can be found in newly synthesized glucose (for example, in liver glycogen) in animal tracer studies. Explain how this can be. Which carbons of glucose would you expect to be the first to be labeled by "Relabeled acetate ... [Pg.800]

Jeffcoat, R., 1979. The bio.syndie.sis of nn.satnrated fatty acids and its control in mammalian liver. Essays in Biochemistry 15 1-36. [Pg.850]

The fatty acids released on triacylglycerol hydrolysis are transported to mitochondria and degraded to acetyl CoA, while the glycerol is carried to the liver for further metabolism. In the liver, glycerol is first phosphorylated by reaction with ATP. Oxidation by NAD+ then yields dihydroxyacetone phosphate (DHAP), which enters the carbohydrate metabolic pathway. We ll discuss this carbohydrate pathway in more detail in Section 29.5. [Pg.1132]

Fatty acid oxida- T Acetyl-CoA carboxylase-2 l Activity, J, malonyl-CoA Liver, muscle,... [Pg.72]

Fatty acid synthesis 1 SREBP-1c, HNF-4a l Expression ACC1, fatty acid synthase Liver... [Pg.72]

Uptake of LCFAs across the lipid-bilayer of most mammalian cells occurs through both a passive diffusion of LCFAs and a protein-mediated LCFA uptake mechanism. At physiological LCFA concentrations (7.5 nM) the protein-mediated, saturable, substrate-specific, and hormonally regulated mechanism of fatty acids accounts for the majority (>90%) of fatty acid uptake by tissues with high LCFA metabolism and storage such as skeletal muscle, adipose tissue, liver,... [Pg.494]

Insulin resistance occurs when the normal response to a given amount of insulin is reduced. Resistance of liver to the effects of insulin results in inadequate suppression of hepatic glucose production insulin resistance of skeletal muscle reduces the amount of glucose taken out of the circulation into skeletal muscle for storage and insulin resistance of adipose tissue results in impaired suppression of lipolysis and increased levels of free fatty acids. Therefore, insulin resistance is associated with a cluster of metabolic abnormalities including elevated blood glucose levels, abnormal blood lipid profile (dyslipidemia), hypertension, and increased expression of inflammatory markers (inflammation). Insulin resistance and this cluster of metabolic abnormalities is strongly associated with obesity, predominantly abdominal (visceral) obesity, and physical inactivity and increased risk for type 2 diabetes, cardiovascular and renal disease, as well as some forms of cancer. In addition to obesity, other situations in which insulin resistance occurs includes... [Pg.636]

Liver t Fatty acid uptake into hepatocytes l VLDL production... [Pg.942]

PPARa Liver, heart, skeletal muscle, atherosclerotic lesions TG- and LDL-C-lowering and HDL-C-raising re-directs excess cholesterol from the peripheral tissues to the liver for excretion into the bile via HDL-C slowed progression of atherosclerosis Fatty acids, eico-sanoids (fatty acids derived from FAS ) Fibrates fenofibrate (Tricor ), genfibrozil (Lopid ) Dyslipidemia... [Pg.945]

Insulin is a hormone manufactured by the beta cells of the pancreas. It is the principal hormone required for the proper use of glucose (carbohydrate) by the body. Insulin also controls the storage and utilization of amino acids and fatty acids. Insulin lowers blood glucose levels by inhibiting glucose production by the liver. [Pg.488]

The rate of mitochondrial oxidations and ATP synthesis is continually adjusted to the needs of the cell (see reviews by Brand and Murphy 1987 Brown, 1992). Physical activity and the nutritional and endocrine states determine which substrates are oxidized by skeletal muscle. Insulin increases the utilization of glucose by promoting its uptake by muscle and by decreasing the availability of free long-chain fatty acids, and of acetoacetate and 3-hydroxybutyrate formed by fatty acid oxidation in the liver, secondary to decreased lipolysis in adipose tissue. Product inhibition of pyruvate dehydrogenase by NADH and acetyl-CoA formed by fatty acid oxidation decreases glucose oxidation in muscle. [Pg.135]

Guzman, M. Geelen, M.J.H. (1993). Review. Regulation of fatty acid oxidation in mammalian liver. Biochim. Biophys. Acta 1167, 227-241. [Pg.152]

Uchicda, Y., Izai, K., Orii, T., Hashimoto, T. (1992). Novel fatty acid p-oxidation enzymes in rat liver mitochondria. II. Purification and properties of enoyl-coenzyme A (CoA) hydratase/3-hy-droxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase trifunctional protein. J. Biol. Chem. 267, 1034-1041. [Pg.154]

GHB is an endogenous, water-soluble, four-carbon fatty acid that is found in peripheral organs, including the heart, liver, kidney, and cardiac and skeletal... [Pg.246]

Peroxidation of lipids is another factor which must be considered in the safety evaluation of liposome administration. Smith and coworkers (1983) demonstrated that lipid peroxides can play an important role in liver toxicity. Allen et al. (1984) showed that liposomes protected by an antioxidant caused less MPS impairment than liposomes subjected to mild oxidizing conditions. From the study of Kunimoto et al. (1981) it can be concluded that the level of peroxidation in freshly prepared liposome preparations and those on storage strongly depends both on the phospholipid fatty acid composition and on the head group of the phospholipid. Addition of appropriate antioxidants to liposomes composed of lipids which are liable to peroxidation and designed for use in human studies is therefore necessary. [Pg.311]


See other pages where Liver fatty acids is mentioned: [Pg.300]    [Pg.150]    [Pg.17]    [Pg.300]    [Pg.150]    [Pg.17]    [Pg.40]    [Pg.101]    [Pg.762]    [Pg.764]    [Pg.779]    [Pg.784]    [Pg.798]    [Pg.177]    [Pg.47]    [Pg.72]    [Pg.119]    [Pg.495]    [Pg.502]    [Pg.538]    [Pg.633]    [Pg.698]    [Pg.758]    [Pg.890]    [Pg.892]    [Pg.939]    [Pg.939]    [Pg.273]    [Pg.86]    [Pg.114]    [Pg.116]    [Pg.262]    [Pg.125]    [Pg.125]    [Pg.153]   
See also in sourсe #XX -- [ Pg.162 ]




SEARCH



Fatty liver

© 2024 chempedia.info