Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fatty acids, activation biosynthesis

Pantothenic acid has a central role in energy-yielding metabolism as the functional moiety of coenzyme A (CoA), in the biosynthesis of fatty acids as the prosthetic group of acyl carrier protein, and through its role in CoA in the mitochondrial elongation of fatty acids the biosynthesis of steroids, porphyrins, and acetylcholine and other acyl transfer reactions, including postsynthetic acylation of proteins. Perhaps 4% of all known enzymes utilize CoA derivatives. CoA is also bound by disulfide links to protein cysteine residues in sporulating bacteria, where it may be involved with heat resistance of the spores, and in mitochondrial proteins, where it seems to be involved in the assembly of active cytochrome c oxidase and ATP synthetase complexes. [Pg.345]

See also Acetyl-CoA, Fats, Albumin, Fatty Acid Activation, Oxidation of Saturated Fatty Acids, Oxidation of Unsaturated Fatty Acids, Fatty Acid Biosynthesis Strategy, Palmitate Synthesis from Acetyl-CoA, Fatty Acid Desaturation, Essential Fatty Acids, Control of Fatty Acid Synthesis, Molecular Structures and Properties of Lipids (from Chapter 10)... [Pg.128]

A pathway for fatty acid activation, involving a reaction with nonphosphorylated high-energy intermediates rather than the formation of acetyl-CoA derivatives has also been postulated. The supporting evidence includes the observations that (1) blocking the electron transport chain with cyanide or uncoupling oxidative phosphorylation with dinitrophenol interferes with the fatty acid oxidation (2) oligomycin, which blocks the biosynthesis of ATP but does not affect the formation... [Pg.55]

Whereas catabolism is fundamentally an oxidative process, anabolism is, by its contrasting nature, reductive. The biosynthesis of the complex constituents of the cell begins at the level of intermediates derived from the degradative pathways of catabolism or, less commonly, biosynthesis begins with oxidized substances available in the inanimate environment, such as carbon dioxide. When the hydrocarbon chains of fatty acids are assembled from acetyl-CoA units, activated hydrogens are needed to reduce the carbonyl (C=0) carbon of acetyl-CoA into a —CHg— at every other position along the chain. When glucose is... [Pg.578]

Because this enzyme catalyzes the committed step in fatty acid biosynthesis, it is carefully regulated. Palmitoyl-CoA, the final product of fatty acid biosynthesis, shifts the equilibrium toward the inactive protomers, whereas citrate, an important allosteric activator of this enzyme, shifts the equilibrium toward the active polymeric form of the enzyme. Acetyl-CoA carboxylase shows the kinetic behavior of a Monod-Wyman-Changeux V-system allosteric enzyme (Chapter 15). [Pg.806]

In fatty-acid biosynthesis, a carboxylic acid is activated by reaction with ATP to give an acyl adenylate, which undergoes nucleophilic acyi substitution with the — SH group or coenzyme A. (ATP = adenosine triphosphate AMP = adenosine monophosphate.)... [Pg.801]

Step 1 of Figure 29.13 Carboxylation Gluconeogenesis begins with the carboxyl-afion of pyruvate to yield oxaloacetate. The reaction is catalyzed by pyruvate carboxylase and requires ATP, bicarbonate ion, and the coenzyme biotin, which acts as a carrier to transport CO2 to the enzyme active site. The mechanism is analogous to that of step 3 in fatty-acid biosynthesis (Figure 29.6), in which acetyl CoA is carboxylated to yield malonyl CoA. [Pg.1162]

Diacylglycerol is glycerol esterified to two fatty acids at the sn-1 and sn-2 positions. It is a membrane-embedded product of phospholipase C action and an activator of protein kinase C. It is also an intermediate in the biosynthesis of triacylglycerol, phosphatidyletha-nolamine and phosphatidylcholine. [Pg.426]

The stimulus for the recent surge of activity in this previously dormant area of organic chemistry can be traced to the prostaglandin connection . That is to the discovery that saturated bicyclic peroxides are key intermediates in the biosynthesis of prostaglandins and other physiologically active substances by the enzymatic oxygenation of polyunsaturated fatty acids. [Pg.127]

Three compounds acetoacetate, P-hydroxybutyrate, and acetone, are known as ketone bodies. They are suboxidized metabolic intermediates, chiefly those of fatty acids and of the carbon skeletons of the so-called ketogenic amino acids (leucine, isoleucine, lysine, phenylalanine, tyrosine, and tryptophan). The ketone body production, or ketogenesis, is effected in the hepatic mitochondria (in other tissues, ketogenesis is inoperative). Two pathways are possible for ketogenesis. The more active of the two is the hydroxymethyl glutarate cycle which is named after the key intermediate involved in this cycle. The other one is the deacylase cycle. In activity, this cycle is inferior to the former one. Acetyl-CoA is the starting compound for the biosynthesis of ketone bodies. [Pg.206]

Abstract Pheromones are utilized by many insects in a complex chemical communication system. This review will look at the biosynthesis of sex and aggregation pheromones in the model insects, moths, flies, cockroaches, and beetles. The biosynthetic pathways involve altered pathways of normal metabolism of fatty acids and isoprenoids. Endocrine regulation of the biosynthetic pathways will also be reviewed for the model insects. A neuropeptide named pheromone biosynthesis activating neuropeptide regulates sex pheromone biosynthesis in moths. Juvenile hormone regulates pheromone production in the beetles and cockroaches, while 20-hydroxyecdysone regulates pheromone production in the flies. [Pg.101]

How the aliphatic monomers are incorporated into the suberin polymer is not known. Presumably, activated co-hydroxy acids and dicarboxylic acids are ester-ified to the hydroxyl groups as found in cutin biosynthesis. The long chain fatty alcohols might be incorporated into suberin via esterification with phenylpro-panoic acids such as ferulic acid, followed by peroxidase-catalyzed polymerization of the phenolic derivative. This suggestion is based on the finding that ferulic acid esters of very long chain fatty alcohols are frequently found in sub-erin-associated waxes. The recently cloned hydroxycinnamoyl-CoA tyramine N-(hydroxycinnamoyl) transferase [77] may produce a tyramide derivative of the phenolic compound that may then be incorporated into the polymer by a peroxidase. The glycerol triester composed of a fatty acid, caffeic acid and a>-hydroxy acid found in the suberin associated wax [40] may also be incorporated into the polymer by a peroxidase. [Pg.27]


See other pages where Fatty acids, activation biosynthesis is mentioned: [Pg.345]    [Pg.345]    [Pg.53]    [Pg.126]    [Pg.270]    [Pg.168]    [Pg.103]    [Pg.50]    [Pg.43]    [Pg.44]    [Pg.68]    [Pg.279]    [Pg.261]    [Pg.573]    [Pg.768]    [Pg.817]    [Pg.456]    [Pg.465]    [Pg.73]    [Pg.78]    [Pg.169]    [Pg.212]    [Pg.186]    [Pg.122]    [Pg.195]    [Pg.24]    [Pg.112]    [Pg.214]    [Pg.218]    [Pg.231]    [Pg.232]    [Pg.106]    [Pg.106]    [Pg.271]   
See also in sourсe #XX -- [ Pg.222 ]




SEARCH



Biosynthesis activity

Fatty acids activation

Fatty acids biosynthesis

© 2024 chempedia.info