Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fast HPLC methods development

Hertog et al. (119) developed a fast HPLC method for the identification and quantification of five major flavonoid aglycones (quercetin, kaempferol, myricetin, luteolin, and apigenin) in freeze-dried vegetable and fruits. However, due to the inadequate resolution of quercetin and luteolin on RP-HPLC on Nova-Pak C]8, two different eluents of different solvent strength and viscosity were utilized. The conditions for hydrolysis and extraction were tested based on different conditions of hydrochloric acid concentration (1.2-2.0 M), reaction period (0.5-6 h), and meth-... [Pg.809]

A well-defined method development plan with clear aim of analysis is critical to the success for fast and effective method development. The general approach for the method development for the separation of pharmaceutical compounds was discussed, emphasizing that modifications in the mobile phase (organic and pH) play a dramatic role on the separation selectivity. The knowledge of the Ka of the primary compound is of utmost importance prior to the commencement of HPLC method development. Moreover, pH screening experiments can help to discern the ionizable nature of the other impurities (i.e., synthetic by-products, metabolites, degradation products, etc.) in the mixture. [Pg.451]

The HPLC method development requirements using short columns and fast HPLC to determine the assay concentration for each polymorph at the different temperatures are the same as for solubility determination. However, for stability evaluation of the different polymorphs a stability-indicating HPLC method should be used. [Pg.596]

Even though, there is no cookbook for HPLC method development this book provides several strategies that the reader could use when presented with a particular situation. These strategies could be stored as tools in the scientists method development arsenal, and drawn from when needed to tackle a particular separation. Moreover, some novel approaches for implementing HPLC, fast HPLC, and hyphenated HPLC techniques towards pharmaceutical analysis are discussed. This book has the potential to serve as a useful resource for the chromatographic community. It can be used as a handbook for the novice as well as the more experienced pharmaceutical chemist who utilizes HPLC as an analytical tool to solve challenging problems regularly in the pharmaceutical industry. [Pg.1132]

Valko et al. [37] developed a fast-gradient RP-HPLC method for the determination of a chromatographic hydrophobicity index (CHI). An octadecylsilane (ODS) column and 50 mM aqueous ammonium acetate (pH 7.4) mobile phase with acetonitrile as an organic modifier (0-100%) were used. The system calibration and quality control were performed periodically by measuring retention for 10 standards unionized at pH 7.4. The CHI could then be used as an independent measure of hydrophobicity. In addition, its correlation with linear free-energy parameters explained some molecular descriptors, including H-bond basicity/ acidity and dipolarity/polarizability. It is noted [27] that there are significant differences between CHI values and octanol-water log D values. [Pg.416]

Assessing the resources available for method development should also be done before beginning a project. The resources available include not only HPLCs, detectors, and columns, but also tools for sample preparation, data capture and analysis software, trained analysts, and especially samples representative of the ultimate analyte matrix. Also, it should be considered whether a fast, secondary method of analysis can be used to optimize sample preparation steps. Often, a simple colorimetric or fluorimetric assay, without separation, can be used for this purpose. A preliminary estimate of the required assay throughput will help to guide selection of methods. [Pg.28]

HPLC is a very powerful technique for qualitative and quantitative analysis. In the support of process development, HPLC plays an important role in monitoring a reaction, since each reaction component can be quantitated. In this role, the HPLC method must be fast, rugged, and specific, capable of separating all reactants, products, and byproducts. Development of appropriate analytical methods is often a rate-limiting step in process development. [Pg.174]

CE has been used for the analysis of anionic surfactants [946,947] and can be considered as complementary to HPLC for the analysis of cationic surfactants with advantages of minimal solvent consumption, higher efficiency, easy cleaning and inexpensive replacement of columns and the ability of fast method development by changing the electrolyte composition. Also the separation of polystyrene sulfonates with polymeric additives by CE has been reported [948]. Moreover, CE has also been used for the analysis of polymeric water treatment additives, such as acrylic acid copolymer flocculants, phosphonates, low-MW acids and inorganic anions. The technique provides for analyst time-savings and has lower detection limits and improved quantification for determination of anionic polymers, compared to HPLC. [Pg.278]

The use of high flow and fast gradient HPLC has gained a lot of popularity because of the ability to reduce LC/MS/MS cycle times during bioanalysis. In the case of fast gradient HPLC, peak shapes were improved and method development times were minimized, especially when multiple analytes with diverse functionalities had to be separated. Flows as high as 1.5 to 2 mL/min were achieved on a 2.1 x 30 mm Xterra C18 column.7 Details are discussed in a recent review.8... [Pg.75]

For discovery PK assays, the most common sample preparation procedure is protein precipitation161720 24 because it is fast, easy to automate, and requires no method development. While protein precipitation typically will not provide as clean a sample as will alternative procedures, it is sufficient for most discovery PK samples that use HPLC/MS/MS for the analytical step.21101... [Pg.212]


See other pages where Fast HPLC methods development is mentioned: [Pg.243]    [Pg.75]    [Pg.186]    [Pg.386]    [Pg.419]    [Pg.4]    [Pg.382]    [Pg.383]    [Pg.765]    [Pg.765]    [Pg.768]    [Pg.770]    [Pg.772]    [Pg.774]    [Pg.776]    [Pg.778]    [Pg.780]    [Pg.784]    [Pg.786]    [Pg.788]    [Pg.794]    [Pg.798]    [Pg.802]    [Pg.804]    [Pg.810]    [Pg.1197]    [Pg.205]    [Pg.159]    [Pg.415]    [Pg.189]    [Pg.277]    [Pg.235]    [Pg.250]    [Pg.251]    [Pg.259]    [Pg.261]    [Pg.261]    [Pg.262]   


SEARCH



Development of Fast HPLC Methods

Fast HPLC

Fast HPLC methods

HPLC methods

HPLC methods development

Method development

© 2024 chempedia.info