Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Extmsion

Catalyst particles are usually cylindrical in shape because it is convenient and economical to fonii tliem by extmsion—like spaghetti. Otlier shapes may be dictated by tlie need to minimize tlie resistance to transport of reactants and products in tlie pores tlius, tlie goal may be to have a high ratio of external (peripheral) surface area to particle volume and to minimize the average distance from tlie outside surface to tlie particle centre, witliout having particles tliat are so small tliat tlie pressure drop of reactants flowing tlirough tlie reactor will be excessive. [Pg.2702]

Pressure pellets sink when placed in water, whereas under the proper conditions, floating pellets can be produced through the extmsion process. That is accomphshed when the feed mixture contains high levels of starch that expands and traps air as the cooked pellets leave the barrel of the extmder. This gives the pellets a density of less than 1.0. Eloating pellets are desirable for species that come to the surface to feed since the aquaculturist can visually determine that the fish are actively feeding and can control daily feeding rates based on observed consumption. [Pg.21]

Blends of PET and HDPE have been suggested to exploit the availabiUty of these clean recycled polymers. The blends could combine the inherent chemical resistance of HDPE with the processiag characteristics of PET. Siace the two polymers are mutually immiscible, about 5% compatihilizer must be added to the molten mixture (41). The properties of polymer blends containing 80—90% PET/20—10% HDPE have been reported (42). Use of 5—15% compatbiLizer produces polymers more suitable for extmsion blow mol ding than pure PET. [Pg.231]

After extmsion, molten polymer is filtered through screen packs. The polymer may be separated iato different melt flow ranges to produce more uniform product grades. [Pg.231]

Polyurethane is pulverized to iacrease its bulk density, mixed with 30—80% of a thermoplastic mol ding material, gelled, and then granulated to give coated urethane foam particles 0.1 to 0.15 mm in size (48). The particle bulk density is three times that of the polyurethane, while the volume is 15% less. This material may be injection molded or extmsion molded into products (49). Other technologies for recycling polyurethanes have also been reported. [Pg.231]

The economics of recycling PET are more favorable than recycling HDPE. To iacrease the recycling of HDPE, the separation of bottles made of these two plastics could be omitted and a mixture processed. Coarse, light-colored powders of the two polymers have been prepared by an experimental soHd state shear extmsion pulverization process (55). The powder has been successfully injection molded without pelletization. [Pg.231]

A small amount of particleboard is made with a fire-retardant treatment for use in locations where codes require this material, as in some offices and elevators. Particleboards receive overlay and finishing treatments with ease. Wood veneers, melamine overlays, printed paper overlays, vinyl overlays, foils, and direct grain printing can all be done quite simply. A small amount of particleboard is also made in the form of shaped, molded articles such as furniture parts, paper roU plugs, bmsh bases, and even toilet seats. There is another small increment of particleboard made by the extmsion process. These products are made in small captive operations owned by furniture manufacturers which consume all of this production in their furniture. The extmsion process differs from conventional flat-pressed particleboard in that the wood furnish is forced between two stationary heated surfaces. The mats are formed from one edge and this edge is alternately formed and pushed between the heated platens, which are maintained at a distance equal to the thickness of board produced. This is an old, slow, small-scale process, but is stiU in use in at least one location. [Pg.393]

Polymer is separated from the polymerisation slurry and slurried with acetic anhydride and sodium acetate catalyst. Acetylation of polymer end groups is carried out in a series of stirred tank reactors at temperatures up to 140°C. End-capped polymer is separated by filtration and washed at least twice, once with acetone and then with water. Polymer is made ready for extmsion compounding and other finishing steps by drying in a steam-tube drier. [Pg.58]

Finishing. AH acetal resins contain various stabilizers introduced by the suppHer in a finishing extmsion (compounding) step. The particular stabilizers used and the exact method of their incorporation are generally not revealed. Thermal oxidative and photooxidative stabilizers have already been mentioned. These must be carefully chosen and tested so that they do not aggravate more degradation (eg, by acidolysis) than they mitigate. [Pg.58]

A variety of other additives may be incorporated during finishing extmsion to produce acetal resins especially formulated to enhance certain characteristics for specific appHcations. [Pg.58]

Acetal resins may also be fabricated into rod, slab, and other shapes by profile extmsion. Extmded shapes are frequendy further machined. Parts fabricated by mol ding or extmsion are ammenable to all typical postforrning processes. [Pg.59]

ASTM D4181 calls out standard specifications for acetal mol ding and extmsion materials. Homopolymer and copolymer are treated separately. Within each class of resin, materials are graded according to melt flow rate. The International Standards Organization (ISO) is expected to issue a specification for acetal resins before 1992. [Pg.60]

Acrylics. Acetone is converted via the intermediate acetone cyanohydrin to the monomer methyl methacrylate (MMA) [80-62-6]. The MMA is polymerized to poly(methyl methacrylate) (PMMA) to make the familiar clear acryUc sheet. PMMA is also used in mol ding and extmsion powders. Hydrolysis of acetone cyanohydrin gives methacrylic acid (MAA), a monomer which goes direcdy into acryUc latexes, carboxylated styrene—butadiene polymers, or ethylene—MAA ionomers. As part of the methacrylic stmcture, acetone is found in the following major end use products acryUc sheet mol ding resins, impact modifiers and processing aids, acryUc film, ABS and polyester resin modifiers, surface coatings, acryUc lacquers, emulsion polymers, petroleum chemicals, and various copolymers (see METHACRYLIC ACID AND DERIVATIVES METHACRYLIC POLYMERS). [Pg.99]

Styrene—acrylonitrile (SAN) copolymers [9003-54-7] have superior properties to polystyrene in the areas of toughness, rigidity, and chemical and thermal resistance (2), and, consequendy, many commercial appHcations for them have developed. These optically clear materials containing between 15 and 35% AN can be readily processed by extmsion and injection mol ding, but they lack real impact resistance. [Pg.191]

Processing. SAN copolymers may be processed using the conventional fabrication methods of extmsion, blow mol ding, injection molding, thermoforming, and casting. Small amounts of additives, such as antioxidants, lubricants, and colorants, may also be used. Typical temperature profiles for injection mol ding and extmsion of predried SAN resins are as follows (101). [Pg.195]

Polyamides. In 1988, 77% of U.S. demand for adipic acid was for nylon-6,6 fiber, while 11% was used in nyon-6,6 resins (195). In Western Europe only about 66% was for polyamide, because of the stronger competition from nylon-6. The fiber appHcations include carpets (67%), apparel (13%), tire cord (7%), and miscellaneous (13%). Nylon-6,6 resins were distributed between injection mol ding (85%) for such appHcations as automotive and electrical parts and for extmsion resins (15%) for strapping, film, and wire and cable. [Pg.247]

Fig. 4. Schematic of extmsion type apparatus for green sheet fabrication. Fig. 4. Schematic of extmsion type apparatus for green sheet fabrication.
Aluminum. The majority of aluminum containers are of monobloc (one-piece) constmction, impact extmded from a slug of lubricated aluminum alloy. These containers are widely used for many products and are available in a vast array of heights and diameters. Because these containers lend themselves to additional shaping, many unusual shapes can be found in the marketplace. They may also be coated after the extmsion process. [Pg.349]

Rocket propeUants are made mosdy by a casting process as distinct from the extmsion process used to make the very much smaller and more numerous gun propeUant grains (1,2). [Pg.33]

The entire continuous automatic process is computer controlled so that continuous performance information is available. Pressure reHef is permitted wherever possible to minimize the likelihood of a detonation. Continuous-screw extmsion processes may be employed for making nitrocellulose single-. [Pg.44]

Solventless Extrusion Process. The solvendess process for making double-base propellants has been used ia the United States primarily for the manufacture of rocket propellant grains having web thickness from ca 1.35 to 15 cm and for thin-sheet mortar (M8) propellant. The process offers such advantages as minimal dimensional changes after extmsion, the elimination of the drying process, and better long-term baUistic uniformity because there is no loss of volatile solvent. The composition and properties of typical double-base solvent extmded rocket and mortar propellant are Hsted ia Table... [Pg.45]


See other pages where Extmsion is mentioned: [Pg.2765]    [Pg.21]    [Pg.21]    [Pg.230]    [Pg.333]    [Pg.440]    [Pg.196]    [Pg.203]    [Pg.203]    [Pg.205]    [Pg.205]    [Pg.206]    [Pg.207]    [Pg.310]    [Pg.311]    [Pg.318]    [Pg.318]    [Pg.318]    [Pg.321]    [Pg.325]    [Pg.21]    [Pg.32]    [Pg.43]    [Pg.43]    [Pg.43]    [Pg.43]    [Pg.45]    [Pg.45]    [Pg.47]    [Pg.48]   
See also in sourсe #XX -- [ Pg.16 , Pg.24 , Pg.122 , Pg.131 , Pg.352 ]




SEARCH



Blown film extmsion

Dry extmsion

Extmsion blow molding

© 2024 chempedia.info