Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Extent, crystallization

But this book has a practical object, as its title proclaims. Our purpose in this chapter is to inquire to what extent crystal shapes can be criteria for identification, and how much they tell us about the atomic and molecular space-patterns within them. [Pg.9]

Bikerman [179] has argued that the Kelvin equation should not apply to crystals, that is, in terms of increased vapor pressure or solubility of small crystals. The reasoning is that perfect crystals of whatever size will consist of plane facets whose radius of curvature is therefore infinite. On a molecular scale, it is argued that local condensation-evaporation equilibrium on a crystal plane should not be affected by the extent of the plane, that is, the crystal size, since molecular forces are short range. This conclusion is contrary to that in Section VII-2C. Discuss the situation. The derivation of the Kelvin equation in Ref. 180 is helpful. [Pg.285]

Students are familiar with the general process of recrystallisa-tion from their more elementary inorganic work. Friefly, it consists in first finding a solvent which will dissolve the crude material readily when hot, but only to a small extent when cold. The crude substance is then dissolved in a minimum of the boiling solvent, the solution filtered if necessary to remove any insoluble impurities, and then cooled, when the solute will crystallise out, leaving the greater part of the impurities in solution. The crop of crystals is then filtered off, and the process repeated until the crystals are pure, and all impurities remain in the mother-liquor. [Pg.13]

The most desirable characteristics of a solvent for recrystalhsation are (a) a high solvent power for the substance to be purified at elevated temperatures and a comparatively low solvent power at the laboratory temperature or below (6) it should dissolve the impurities readily or to only a very small extent (c) it should yield well-formed crystals of the purified compound and (d) it must be capable of easy removal from the crystals of the purified compound, i.e., possess a relatively low boiling point. It is assumed, of course, that the solvent does not react chemically with the substance to be purified. If two or more solvents appear to be equally suitable for the recrystallisation, the final selection will depend upon such factors as ease of manipulation, inflammability and cost. [Pg.123]

The state of the surface is now best considered in terms of distribution of site energies, each of the minima of the kind indicated in Fig. 1.7 being regarded as an adsorption site. The distribution function is defined as the number of sites for which the interaction potential lies between and (rpo + d o)> various forms of this function have been proposed from time to time. One might expect the form ofto fio derivable from measurements of the change in the heat of adsorption with the amount adsorbed. In practice the situation is complicated by the interaction of the adsorbed molecules with each other to an extent depending on their mean distance of separation, and also by the fact that the exact proportion of the different crystal faces exposed is usually unknown. It is rarely possible, therefore, to formulate the distribution function for a given solid except very approximately. [Pg.20]

The fundamental equilibrium relationships we have discussed in the last sections are undoubtedly satisfied to the extent possible in polymer crystallization, but this possibility is limited by kinetic considerations. To make sense of the latter, both the mechanisms for crystallization and experimental rates of crystallization need to be examined. [Pg.219]

When we speak of the solidification of the extruded polymer, we use the term in the broadest sense It includes crystallization, vitrification, or both. The extent of the drawing of the fibers and the rate and temperature of the drawing affect the mechanical properties of the fiber produced. This conclusion should be evident from a variety of ideas presented in the last three chapters ... [Pg.263]

Fractional crystallization may be accompHshed on a batch, continuous, or semicontkiuous basis. Oil is chilled continuously while passkig through the unit and is then passed over a continuous belt filter which separates soHd fat from the Hquid oil. The process gives poorer separation compared to solvent fractionation because oils are viscous at crystallization temperatures and are entrained to a significant extent ki the soHd fraction. The Hquid fraction, however, is relatively free of saturated material. [Pg.127]

Liquid Effluents. Recycling of acid, soda, and zinc have long been necessary economically, and the acid—soda reaction product, sodium sulfate, is extracted and sold into other sectors of the chemical industry. Acid recovery usually involves the degassing, filtering, and evaporative concentration of the spent acid leaving the spinning machines. Excess sodium sulfate is removed by crystallization and then dehydrated before sale. Traces of zinc that escape recovery are removable from the main Hquid effluent stream to the extent that practically all the zinc can now be retained in the process. [Pg.353]

Cmde diketene obtained from the dimeriza tion of ketene is dark brown and contains up to 10% higher ketene oligomers but can be used without further purification. In the cmde form, however, diketene has only limited stabHity. Therefore, especiaHy if it has to be stored for some time, the cmde diketene is distiHed to > 99.5% purity (124). The tarry distiHation residue, containing trike ten e (5) and other oligomers, tends to undergo violent Spontaneous decomposition and is neutralized immediately with water or a low alcohol. Ultrapure diketene (99.99%) can be obtained by crystallization (125,126). Diketene can be stabHized to some extent with agents such as alcohols and even smaH quantities of water [7732-18-5] (127), phenols, boron oxides, sulfur [7704-34-9] (128) and sulfate salts, eg, anhydrous copper sulfate [7758-98-7]. [Pg.479]

Fig. 8. (a) Energy levels for the band model of silver haUde crystals. The band bending at the surface (-) is exaggerated. The extent of bending is at... [Pg.446]

The effluent from the reactor is a slurry of terephthaUc acid because it dissolves to a limited extent in almost all solvents, including the acetic acid—water solvent used here. This slurry passes through a surge vessel that operates at a lower pressure than the reactor. More terephthaUc acid crystallizes and the slurry is then ready to be processed at close to atmospheric conditions. The terephthaUc acid crystals are recovered by filtration, washed, dried, and conveyed to storage, from which they are in turn fed to the purification step. [Pg.488]

A crystalline or semicrystalline state in polymers can be induced by thermal changes from a melt or from a glass, by strain, by organic vapors, or by Hquid solvents (40). Polymer crystallization can also be induced by compressed (or supercritical) gases, such as CO2 (41). The plasticization of a polymer by CO2 can increase the polymer segmental motions so that crystallization is kinetically possible. Because the amount of gas (or fluid) sorbed into the polymer is a dkect function of the pressure, the rate and extent of crystallization may be controUed by controlling the supercritical fluid pressure. As a result of this abiHty to induce crystallization, a history effect may be introduced into polymers. This can be an important consideration for polymer processing and gas permeation membranes. [Pg.223]

The rosin column spHt is controUed by the fatty acid content specified for rosin. This is usuaUy set at 2% fatty acids. At the high temperature near the bottom of the column and the reboUer, rosin dimerizes to some extent. By taking rosin from the column as a sidestream above the bottom, its rosin dimer content is minimized. Because of its high purity, sidestream rosin product is prone to crystallization. [Pg.305]

Small concentrations of vinylcarboxyhc acids, eg, acryhc acid, methacrylic acid, or itaconic acid, are sometimes included to enhance adhesion of the polymer to the substrate. The abihty to crystalline and the extent of crystallization are reduced with increa sing concentration of the comonomers some commercial polymers do not crystalline. The most common lacquer resins are terpolymers of VDC—methyl methacrylate—acrylonitrile (162,163). The VDC level and the methyl methacrylate—acrylonitrile ratio are adjusted for the best balance of solubihty and permeabihty. These polymers exhibit a unique combination of high solubihty, low permeabihty, and rapid crystallization (164). [Pg.442]

Boiler Deposits. Deposition is a principal problem in the operation of steam generating equipment. The accumulation of material on boiler surfaces can cause overheating and/or corrosion. Both of these conditions frequentiy result in unscheduled downtime. Common feed-water contaminants that can form boiler deposits include calcium, magnesium, iron, copper, aluminum, siUca, and (to a lesser extent) silt and oil. Most deposits can be classified as one of two types scale that crystallized directiy onto tube surfaces or sludge deposits that precipitated elsewhere and were transported to the metal surface by the flowing water. [Pg.263]


See other pages where Extent, crystallization is mentioned: [Pg.72]    [Pg.11]    [Pg.51]    [Pg.112]    [Pg.55]    [Pg.72]    [Pg.11]    [Pg.51]    [Pg.112]    [Pg.55]    [Pg.132]    [Pg.1983]    [Pg.2219]    [Pg.2223]    [Pg.2500]    [Pg.354]    [Pg.203]    [Pg.237]    [Pg.264]    [Pg.236]    [Pg.221]    [Pg.231]    [Pg.236]    [Pg.272]    [Pg.421]    [Pg.30]    [Pg.72]    [Pg.180]    [Pg.182]    [Pg.296]    [Pg.410]    [Pg.422]    [Pg.435]    [Pg.443]    [Pg.474]    [Pg.291]    [Pg.391]    [Pg.477]    [Pg.300]   
See also in sourсe #XX -- [ Pg.809 ]




SEARCH



© 2024 chempedia.info