Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Experimental methods solution

The most widely used experimental method for determining surface excess quantities at the liquid-vapor interface makes use of radioactive tracers. The solute to be studied is labeled with a radioisotope that emits weak beta radiation, such as H, C, or One places a detector close to the surface of the solution and measures the intensity of beta radiation. Since the penetration range of such beta emitters is small (a ut 30 mg/cm for C, with most of the adsorption occurring in the first two-tenths of the range), the measured radioactivity corresponds to the surface region plus only a thin layer of solution (about 0.06 mm for C and even less for H). [Pg.77]

It seems appropriate to assume the applicability of equation (A2.1.63) to sufficiently dilute solutions of nonvolatile solutes and, indeed, to electrolyte species. This assumption can be validated by other experimental methods (e.g. by electrochemical measurements) and by statistical mechanical theory. [Pg.360]

Calorimetry is the basic experimental method employed in thennochemistry and thennal physics which enables the measurement of the difference in the energy U or enthalpy //of a system as a result of some process being done on the system. The instrument that is used to measure this energy or enthalpy difference (At/ or AH) is called a calorimeter. In the first section the relationships between the thennodynamic fiinctions and calorunetry are established. The second section gives a general classification of calorimeters in tenns of the principle of operation. The third section describes selected calorimeters used to measure thennodynamic properties such as heat capacity, enthalpies of phase change, reaction, solution and adsorption. [Pg.1899]

Quantitative eomparisons of aromatic reactivities were made by using the competitive method with solutions of nitronium tetrafluoroborate in sulpholan, and a concentration of aromatic compounds 10 times that of the salt. To achieve this condition considerable proportions of the aromatic compoimds were added to the medium, thus depriving the sulpholan of its role as true solvent thus, in the nitration of the alkyl- and halogeno-benzenes, the description of the experimental method shows that about 50-60 cm of mixed aromatic compounds were dissolved in a total of 130 cm of sulpholan. [Pg.62]

At this temperature, and provided that the concentration of acetic acid in the acetic anhydride was small, the conversion of nitric acid into acetyl nitrate would have had a half-life of 7-10 min. The description of the experimental method makes it clear that the solutions used by Dewar in this work contained acetyl nitrate over the vast majority of the reaction. Therefore it must be supposed that in this... [Pg.92]

Although the emphasis in these last chapters is certainly on the polymeric solute, the experimental methods described herein also measure the interactions of these solutes with various solvents. Such interactions include the hydration of proteins at one extreme and the exclusion of poor solvents from random coils at the other. In between, good solvents are imbibed into the polymer domain to various degrees to expand coil dimensions. Such quantities as the Flory-Huggins interaction parameter, the 0 temperature, and the coil expansion factor are among the ways such interactions are quantified in the following chapters. [Pg.496]

In addition to an array of experimental methods, we also consider a more diverse assortment of polymeric systems than has been true in other chapters. Besides synthetic polymer solutions, we also consider aqueous protein solutions. The former polymers are well represented by the random coil model the latter are approximated by rigid ellipsoids or spheres. For random coils changes in the goodness of the solvent affects coil dimensions. For aqueous proteins the solvent-solute interaction results in various degrees of hydration, which also changes the size of the molecules. Hence the methods we discuss are all potential sources of information about these interactions between polymers and their solvent environments. [Pg.583]

Foam Fractionation. An interesting experimental method that has been performed for wastewater treatment of disperse dyes is foam fractionation (88). This method is based on the phenomenon that surface-active solutes collect at gas—Hquid iaterfaces. The results were 86—96% color removal from a brown disperse dye solution and 75% color removal from a textile mill wastewater. Unfortunately, the necessary chemical costs make this method relatively expensive (see Foams). [Pg.382]

Both kinetic and equilibrium experimental methods are used to characterize and compare adsorption of aqueous pollutants in active carbons. In the simplest kinetic method, the uptake of a pollutant from a static, isothermal solution is measured as a function of time. This approach may also yield equilibrium adsorption data, i.e., amounts adsorbed for different solution concentrations in the limit t —> qo. A more practical kinetic method is a continuous flow reactor, as illustrated in Fig. 5. [Pg.107]

As the titration begins, mostly HAc is present, plus some H and Ac in amounts that can be calculated (see the Example on page 45). Addition of a solution of NaOH allows hydroxide ions to neutralize any H present. Note that reaction (2) as written is strongly favored its apparent equilibrium constant is greater than lO As H is neutralized, more HAc dissociates to H and Ac. As further NaOH is added, the pH gradually increases as Ac accumulates at the expense of diminishing HAc and the neutralization of H. At the point where half of the HAc has been neutralized, that is, where 0.5 equivalent of OH has been added, the concentrations of HAc and Ac are equal and pH = pV, for HAc. Thus, we have an experimental method for determining the pV, values of weak electrolytes. These p V, values lie at the midpoint of their respective titration curves. After all of the acid has been neutralized (that is, when one equivalent of base has been added), the pH rises exponentially. [Pg.48]

There has been considerable discussion about the extent of hydration of the proton and the hydroxide ion in aqueous solution. There is little doubt that this is variable (as for many other ions) and the hydration number derived depends both on the precise definition adopted for this quantity and on the experimental method used to determine it. H30" has definitely been detected by vibration spectroscopy, and by O nmr spectroscopy on a solution of HF/SbFs/Ha O in SO2 a quartet was observed at —15° which collapsed to a singlet on proton decoupling, 7( 0- H) 106 Hz. In crystalline hydrates there are a growing number of well-characterized hydrates of the series H3O+, H5O2+, H7O3+, H9O4+ and H13O6+, i.e. [H(0H2) ]+ n = 1-4, Thus... [Pg.630]

The knowledge of these adsorption isotherms allows quantification of the respective affinity for the stationary phase with respect to the different solutes. Many different isotherm equations have been described in the literature, and experimental methods allowing their determination are reviewed by [58]. As a first approximation, modified competitive Langmuir isotherms can often he used ... [Pg.262]

The use of a pH meter or an ion activity meter to measure the concentration of hydrogen ions or of some other ionic species in a solution is clearly an example of direct potentiometry. In view of the discussion in the preceding sections the procedure involved will be evident, and two examples will suffice to illustrate the experimental method. [Pg.567]

This section deals with the experimental determination of the rate of oil solubilization in aqueous solutions of AOS and IOS [70]. The experimental method [71] consists of injecting 25 pi of n-hexadecane (containing 5 wt % Dobanol 45-3 as an emulsifier) into 50 ml water this produces a turbid macroemulsion upon vigorous stirring. At the start of the experiment, a concentrated solution of the surfactant under test is injected and the decrease in turbidity is followed with a photometer. The time elapsed to reach 90% of the initial turbidity is recorded (t ) and the pseudo rate constant of oil solubilization is calculated from... [Pg.413]

For further discussion of experimental methods for determination of electrophoretic titration curves of proteins, see the recent study by Gianazza et al. [129], For discussion of the free solution mobility of DNA see Stellwagen et al. [368],... [Pg.589]

The most important current problem of planar chromatography is the elaboration of theoretical and experimental methods for predicting the conditions of mixture separation in order to achieve better results. Planar chromatography is an analytical chemistry technique for the separation of mixtures that involves passing of solutes in the mobile phase through the stationary phase. Usually, each component has a... [Pg.61]

Experimental methods for determining diffusion coefficients are described in the following section. The diffusion coefficients of the individual ions at infinite dilution can be calculated from the ionic conductivities by using Eqs (2.3.22), (2.4.2) and (2.4.3). The individual diffusion coefficients of the ions in the presence of an excess of indifferent electrolyte are usually found by electrochemical methods such as polarography or chronopotentiometry (see Section 5.4). Examples of diffusion coefficients determined in this way are listed in Table 2.4. Table 2.5 gives examples of the diffusion coefficients of various salts in aqueous solutions in dependence on the concentration. [Pg.128]

Experimental methods used for studies of Cd and Hg complexes in solution and in the solid state are reviewed briefly, with examples for the application of the method under discussion in recent work. In a separate section quantum-chemical studies, including consideration of relativistic effects, on existing and not-yet-existing species with Cd and/or Hg, are also surveyed. [Pg.1254]

In this paper we briefly describe the apparatus and experimental method, then consider the interactions between i) layers of polystyrene in cyclohexane under poor-solvent and ii) 0 - solvent conditions,iii) the interactions between adsorbed PEO layers in a good (aqueous) solvent and iv) the surface forces between layers of adsorbed poly-L-lysine, a cationic polyelectrolyte, in aqueous salt solutions. We consider briefly the implications of our results for the current theoretical understanding. [Pg.228]

In order to determine the stability constants for a series of complexes in solution, we must determine the concentrations of several species. Moreover, we must then solve a rather complex set of equations to evaluate the stability constants. There are several experimental techniques that are frequently employed for determining the concentrations of the complexes. For example, spectrophotometry, polarography, solubility measurements, or potentiometry may be used, but the choice of experimental method is based on the nature of the complexes being studied. Basically, however, we proceed as follows. A parameter is defined as the average number of bound ligands per metal ion, N, which is expressed as... [Pg.677]

During the past few decades, it has been shown that multi-nuclear NMR is a very powerful experimental technique to study alkali complexes particularly in non-aqueous solutions. The experimental method used throughout this work was 7Li NMR. This method possesses features that make it convenient for this kind of investigation. Particular attention was given to high-pressure 7Li NMR, which includes the first example reported for... [Pg.525]


See other pages where Experimental methods solution is mentioned: [Pg.95]    [Pg.359]    [Pg.221]    [Pg.437]    [Pg.1122]    [Pg.270]    [Pg.431]    [Pg.77]    [Pg.529]    [Pg.830]    [Pg.49]    [Pg.275]    [Pg.284]    [Pg.651]    [Pg.6]    [Pg.551]    [Pg.704]    [Pg.250]    [Pg.254]    [Pg.239]    [Pg.15]    [Pg.139]    [Pg.268]    [Pg.851]    [Pg.213]    [Pg.347]    [Pg.199]    [Pg.190]   


SEARCH



Solution method

© 2024 chempedia.info